• This record comes from PubMed

Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller

. 2022 Mar 07 ; 219 (3) : . [epub] 20220301

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NIH HHS - United States
ERC-2013-StG 337146 European Research Council - International

Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.

Beth Israel Deaconess Medical Center Boston MA

Central European Institute of Technology Masaryk University Brno Czech Republic

Centre de Recherche des Cordeliers Institut national de la santé et de la recherche médicale Sorbonne Université Université de Paris Paris France

Centre national de la recherche scientifique URA3015 Paris France

Department of Medical Microbiology Amsterdam Infection and Immunity Institute Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands

Department of Microbiology and Immunology Weill Medical College of Cornell University New York NY

Imagopole Plate Forme de Microscopie Ultrastructurale and UMR 3528 Institut Pasteur Paris France

Innate Immunity Unit Department of Immunology Institut Pasteur Paris France

Institut de Chimie des Substances Naturelles Centre national de la recherche scientifique Université Paris Saclay Gif sur Yvette France

Institut national de la santé et de la recherche médicale U1222 Paris France

Institut national de la santé et de la recherche médicale U1223 Paris France

Laboratory of Humoral Immunology Department of Immunology Institut Pasteur Paris France

Laboratory of Molecular Immunology The Rockefeller University New York NY

Partners AIDS Research Center Massachusetts General Hospital and Harvard Medical School Charlestown MA

Ragon Institute of Massachusetts General Hospital MIT and Harvard Cambridge MA

Structural Virology Unit Department of Virology Institut Pasteur Paris France

Université de Paris Sorbonne Paris Cité Paris France

Université de Tours Institut national de la santé et de la recherche médicale U1259 Tours France

Virus and Immunity Unit Department of Virology Institut Pasteur Paris France

See more in PubMed

Anthony, C., York T., Bekker V., Matten D., Selhorst P., Ferreria R.C., Garrett N.J., Karim S.S.A., Morris L., Wood N.T., et al. . 2017. Cooperation between strain-specific and broadly neutralizing responses limited viral escape and prolonged the exposure of the broadly neutralizing epitope. J. Virol. 91:e00828-17. 10.1128/jvi.00828-17 PubMed DOI PMC

Astronomo, R.D., Santra S., Ballweber-Fleming L., Westerberg K.G., Mach L., Hensley-McBain T., Sutherland L., Mildenberg B., Morton G., Yates N.L., et al. . 2016. Neutralization takes precedence over IgG or IgA isotype-related functions in mucosal HIV-1 antibody-mediated protection. EBioMed. 14:97–111. 10.1016/j.ebiom.2016.11.024 PubMed DOI PMC

Barnes, C.O., Gristick H.B., Freund N.T., Escolano A., Lyubimov A.Y., Hartweger H., West A.P., Cohen A.E., Nussenzweig M.C., and Bjorkman P.J.. 2018. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat. Comm. 9:1251. 10.1038/s41467-018-03632-y PubMed DOI PMC

Behrens, A.J., Vasiljevic S., Pritchard L.K., Harvey D.J., Andev R.S., Krumm S.A., Struwe W.B., Cupo A., Kumar A., Zitzmann N., et al. . 2016. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 14:2695–2706. 10.1016/j.celrep.2016.02.058 PubMed DOI PMC

Black, K.P., Cummins J.E. Jr., and Jackson S.. 1996. Serum and secretory IgA from HIV-infected individuals mediate antibody-dependent cellular cytotoxicity. Clin. Immunol. Immunopathol. 81:182–190. 10.1006/clin.1996.0175 PubMed DOI

Bonsignori, M., Kreider E.F., Fera D., Meyerhoff R.R., Bradley T., Wiehe K., Alam S.M., Aussedat B., Walkowicz W.E., Hwang K.K., et al. . 2017. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci. Transl. Med. 9:eaai7514. 10.1126/scitranslmed.aai7514 PubMed DOI PMC

Bournazos, S., Klein F., Pietzsch J., Seaman M.S., Nussenzweig M.C., and Ravetch J.V.. 2014. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 158:1243–1253. 10.1016/j.cell.2014.08.023 PubMed DOI PMC

Bouvin-Pley, M., Morgand M., Meyer L., Goujard C., Moreau A., Mouquet H., Nussenzweig M., Pace C., Ho D., Bjorkman P.J., et al. . 2014. Drift of the HIV-1 envelope glycoprotein gp120 toward increased neutralization resistance over the course of the epidemic: a comprehensive study using the most potent and broadly neutralizing monoclonal antibodies. J. Virol. 88:13910–13917. 10.1128/JVI.02083-14 PubMed DOI PMC

Bruel, T., Guivel-Benhassine F., Amraoui S., Malbec M., Richard L., Bourdic K., Donahue D.A., Lorin V., Casartelli N., Noel N., et al. . 2016. Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat. Commun. 7:10844. 10.1038/ncomms10844 PubMed DOI PMC

Bruel, T., Guivel-Benhassine F., Lorin V., Lortat-Jacob H., Baleux F., Bourdic K., Noel N., Lambotte O., Mouquet H., and Schwartz O.. 2017. Lack of ADCC breadth of human nonneutralizing anti-HIV-1 antibodies. J. Virol. 91:e02440-16. 10.1128/JVI.02440-16 PubMed DOI PMC

Calarese, D.A., Scanlan C.N., Zwick M.B., Deechongkit S., Mimura Y., Kunert R., Zhu P., Wormald M.R., Stanfield R.L., Roux K.H., et al. . 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science. 300:2065–2071. 10.1126/science.1083182 PubMed DOI

Caskey, M., Klein F., and Nussenzweig M.C.. 2019. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25:547–553. 10.1038/s41591-019-0412-8 PubMed DOI PMC

Cheeseman, H.M., Carias A.M., Evans A.B., Olejniczak N.J., Ziprin P., King D.F., Hope T.J., and Shattock R.J.. 2016. Expression profile of human Fc receptors in mucosal tissue: Implications for antibody-dependent cellular effector functions targeting HIV-1 transmission. PLoS One. 11:e0154656. 10.1371/journal.pone.0154656 PubMed DOI PMC

Cheeseman, H.M., Olejniczak N.J., Rogers P.M., Evans A.B., King D.F.L., Ziprin P., Liao H.X., Haynes B.F., and Shattock R.J.. 2017. Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies. J. Virol. 91:e01762-16. 10.1128/JVI.01762-16 PubMed DOI PMC

Daniels, C.N., and Saunders K.O.. 2019. Antibody responses to the HIV-1 envelope high mannose patch. Adv. Immunol. 143:11–73. 10.1016/bs.ai.2019.08.002 PubMed DOI PMC

deCamp, A., Hraber P., Bailer R.T., Seaman M.S., Ochsenbauer C., Kappes J., Gottardo R., Edlefsen P., Self S., Tang H., et al. . 2013. Global panel of HIV-1 env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 88:2489–2507. 10.1128/JVI.02853-13 PubMed DOI PMC

Doria-Rose, N.A., and Landais E.. 2019. Coevolution of HIV-1 and broadly neutralizing antibodies. Curr. Opin HIV AIDS. 14:286–293. 10.1097/COH.0000000000000550 PubMed DOI PMC

Doria-Rose, N.A., Schramm C.A., Gorman J., Moore P.L., Bhiman J.N., DeKosky B.J., Ernandes M.J., Georgiev I.S., Kim H.J., Pancera M., et al. . 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature. 509:55–62. 10.1038/nature13036 PubMed DOI PMC

Duchemin, M., Khamassi M., Xu L., Tudor D., and Bomsel M.. 2018. IgA targeting human immunodeficiency virus-1 envelope gp41 triggers antibody-dependent cellular cytotoxicity cross-clade and cooperates with gp41-specific IgG to increase cell lysis. Front Immunol. 9:244. 10.3389/fimmu.2018.00244 PubMed DOI PMC

Duchemin, M., Tudor D., Cottignies-Calamarte A., and Bomsel M.. 2020. Antibody-dependent cellular phagocytosis of HIV-1-Infected cells is efficiently triggered by IgA targeting HIV-1 envelope subunit gp41. Front Immunol. 11:1141. 10.3389/fimmu.2020.01141 PubMed DOI PMC

Emsley, P., Lohkamp B., Scott W.G., and Cowtan K.. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66:486–501. 10.1107/S0907444910007493 PubMed DOI PMC

Fischinger, S., Dolatshahi S., Jennewein M.F., Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Michael N., Vasan S., Ackerman M.E., Streeck H., and Alter G.. 2020. IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees. JCI Insight. 5:e140925. 10.1172/jci.insight.140925 PubMed DOI PMC

Freund, N.T., Wang H., Scharf L., Nogueira L., Horwitz J.A., Bar-On Y., Golijanin J., Sievers S.A., Sok D., Cai H., et al. . 2017. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 9:eaal2144. 10.1126/scitranslmed.aal2144 PubMed DOI PMC

Gao, F., Bonsignori M., Liao H.X., Kumar A., Xia S.M., Lu X., Cai F., Hwang K.K., Song H., Zhou T., et al. . 2014. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell. 158:481–491. 10.1016/j.cell.2014.06.022 PubMed DOI PMC

Garces, F., Lee J.H., de Val N., de la Pena A.T., Kong L., Puchades C., Hua Y., Stanfield R.L., Burton D.R., Moore J.P., et al. . 2015. Affinity maturation of a potent family of HIV antibodies is primarily focused on accommodating or avoiding glycans. Immunity. 43:1053–1063. 10.1016/j.immuni.2015.11.007 PubMed DOI PMC

Gayet, R., Michaud E., Nicoli F., Chanut B., Paul M., Rochereau N., Guillon C., He Z., Papagno L., Bioley G., et al. . 2020. Impact of IgA isoforms on their ability to activate dendritic cells and to prime T cells. Eur. J. Immunol. 50:1295–1306. 10.1002/eji.201948177 PubMed DOI

Gray, E.S., Moody M.A., Wibmer C.K., Chen X., Marshall D., Amos J., Moore P.L., Foulger A., Yu J.S., Lambson B., et al. . 2011. Isolation of a monoclonal antibody that targets the alpha-2 helix of gp120 and represents the initial autologous neutralizing-antibody response in an HIV-1 subtype C-infected individual. J. Virol. 85:7719–7729. 10.1128/JVI.00563-11 PubMed DOI PMC

Huang, J., Kang B.H., Pancera M., Lee J.H., Tong T., Feng Y., Imamichi H., Georgiev I.S., Chuang G.Y., Druz A., et al. . 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature. 515:138–142. 10.1038/nature13601 PubMed DOI PMC

Jia, M., Liberatore R.A., Guo Y., Chan K.W., Pan R., Lu H., Waltari E., Mittler E., Chandran K., Finzi A., et al. . 2020. VSV-displayed HIV-1 envelope identifies broadly neutralizing antibodies class-switched to IgG and IgA. Cell Host Microbe. 27:963–975.e5. 10.1016/j.chom.2020.03.024 PubMed DOI PMC

Kelley, L.A., Mezulis S., Yates C.M., Wass M.N., and Sternberg M.J.. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Klein, F., Gaebler C., Mouquet H., Sather D.N., Lehmann C., Scheid J.F., Kraft Z., Liu Y., Pietzsch J., Hurley A., et al. . 2012. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209:1469–1479. 10.1084/jem.20120423 PubMed DOI PMC

Klein, F., Mouquet H., Dosenovic P., Scheid J.F., Scharf L., and Nussenzweig M.C.. 2013. Antibodies in HIV-1 vaccine development and therapy. Science. 341:1199–1204. 10.1126/science.1241144 PubMed DOI PMC

Kong, L., Torrents de la Peña A., Deller M.C., Garces F., Sliepen K., Hua Y., Stanfield R.L., Sanders R.W., and Wilson I.A.. 2015a. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallogr. D Biol. Crystallogr. 71:2099–2108. 10.1107/S1399004715013917 PubMed DOI PMC

Kong, L., Wilson I.A., and Kwong P.D.. 2015b. Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins. 83:590–596. 10.1002/prot.24747 PubMed DOI PMC

Krebs, S.J., Kwon Y.D., Schramm C.A., Law W.H., Donofrio G., Zhou K.H., Gift S., Dussupt V., Georgiev I.S., Schatzle S., et al. . 2019. Longitudinal analysis reveals early development of three MPER-directed neutralizing antibody lineages from an HIV-1-Infected individual. Immunity. 50:677–691.e13. 10.1016/j.immuni.2019.02.008 PubMed DOI PMC

Kumar, S., Ju B., Shapero B., Lin X., Ren L., Zhang L., Li D., Zhou Z., Feng Y., Sou C., et al. . 2020. A VH1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. Sci. Adv. 6:eabb1328. 10.1126/sciadv.abb1328 PubMed DOI PMC

Kumar, S., Panda H., Makhdoomi M.A., Mishra N., Safdari H.A., Chawla H., Aggarwal H., Reddy E.S., Lodha R., Kumar Kabra S., et al. . 2019. An HIV-1 broadly neutralizing antibody from a clade C-infected pediatric elite neutralizer potently neutralizes the contemporaneous and autologous evolving viruses. J. Virol. 93:e01495-18. 10.1128/JVI.01495-18 PubMed DOI PMC

Kwong, P.D., and Mascola J.R.. 2018. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity. 48:855–871. 10.1016/j.immuni.2018.04.029 PubMed DOI

Li, M., Gao F., Mascola J.R., Stamatatos L., Polonis V.R., Koutsoukos M., Voss G., Goepfert P., Gilbert P., Greene K.M., et al. . 2005. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79:10108–10125. 10.1128/JVI.79.16.10108-10125.2005 PubMed DOI PMC

Li, Y., Masse-Ranson G., Garcia Z., Bruel T., Kok A., Strick-Marchand H., Jouvion G., Serafini N., Lim A.I., Dusseaux M., et al. . 2018. A human immune system mouse model with robust lymph node development. Nat. Methods. 15:623–630. 10.1038/s41592-018-0071-6 PubMed DOI

Liebschner, D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., et al. . 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75:861–877. 10.1107/S2059798319011471 PubMed DOI PMC

Longo, N.S., Sutton M.S., Shiakolas A.R., Guenaga J., Jarosinski M.C., Georgiev I.S., McKee K., Bailer R.T., Louder M.K., O’Dell S., et al. . 2016. Multiple antibody lineages in one donor target the glycan-V3 supersite of the HIV-1 envelope glycoprotein and display a preference for quaternary binding. J. Virol. 90:10574–10586. 10.1128/JVI.01012-16 PubMed DOI PMC

Lopez, E., Shattock R.J., Kent S.J., and Chung A.W.. 2018. The multifaceted nature of immunoglobulin A and its complex role in HIV. AIDS Res. Hum. Retroviruses. 34:727–738. 10.1089/AID.2018.0099 PubMed DOI

Lorin, V., Malbec M., Eden C., Bruel T., Porrot F., Seaman M.S., Schwartz O., and Mouquet H.. 2017. Broadly neutralizing antibodies suppress post-transcytosis HIV-1 infectivity. Mucosal Immunol. 10:814–826. 10.1038/mi.2016.106 PubMed DOI

Lorin, V., and Mouquet H.. 2015. Efficient generation of human IgA monoclonal antibodies. J. Immunol. Methods. 422:102–110. 10.1016/j.jim.2015.04.010 PubMed DOI

Lu, C.L., Murakowski D.K., Bournazos S., Schoofs T., Sarkar D., Halper-Stromberg A., Horwitz J.A., Nogueira L., Golijanin J., Gazumyan A., et al. . 2016. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science. 352:1001–1004. 10.1126/science.aaf1279 PubMed DOI PMC

MacLeod, D.T., Choi N.M., Briney B., Garces F., Ver L.S., Landais E., Murrell B., Wrin T., Kilembe W., Liang C.H., et al. . 2016. Early antibody lineage diversification and independent limb maturation lead to broad HIV-1 neutralization targeting the env high-mannose patch. Immunity. 44:1215–1226. 10.1016/j.immuni.2016.04.016 PubMed DOI PMC

Magri, G., and Cerutti A.. 2020. IgA summons IgG to take a hit at HIV-1. Cell Host Microbe. 27:854–856. 10.1016/j.chom.2020.05.017 PubMed DOI PMC

Masse-Ranson, G., Dusseaux M., Fiquet O., Darche S., Boussand M., Li Y., Lopez-Lastra S., Legrand N., Corcuff E., Toubert A., et al. . 2019. Accelerated thymopoiesis and improved T-cell responses in HLA-A2/-DR2 transgenic BRGS-based human immune system mice. Eur. J. Immunol. 49:954–965. 10.1002/eji.201848001 PubMed DOI

McCoy, L.E. 2018. The expanding array of HIV broadly neutralizing antibodies. Retrovirology. 15:70. 10.1186/s12977-018-0453-y PubMed DOI PMC

Meffre, E., Schaefer A., Wardemann H., Wilson P., Davis E., and Nussenzweig M.C.. 2004. Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J. Exp. Med. 199:145–150. 10.1084/jem.20031550 PubMed DOI PMC

Moreau, H.D., and Bousso P.. 2014. Disc. Intravital. 1:27–31. 10.4161/intv.21896 DOI

Mouquet, H. 2014. Antibody B cell responses in HIV-1 infection. Trends Immunol. 35:549–561. 10.1016/j.it.2014.08.007 PubMed DOI

Mouquet, H., Klein F., Scheid J.F., Warncke M., Pietzsch J., Oliveira T.Y., Velinzon K., Seaman M.S., and Nussenzweig M.C.. 2011. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses. PLoS One. 6:e24078. 10.1371/journal.pone.0024078 PubMed DOI PMC

Mouquet, H., Scharf L., Euler Z., Liu Y., Eden C., Scheid J.F., Halper-Stromberg A., Gnanapragasam P.N., Spencer D.I., Seaman M.S., et al. . 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA. 109:E3268–E3277. 10.1073/pnas.1217207109 PubMed DOI PMC

Mouquet, H., Scheid J.F., Zoller M.J., Krogsgaard M., Ott R.G., Shukair S., Artyomov M.N., Pietzsch J., Connors M., Pereyra F., et al. . 2010. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature. 467:591–595. 10.1038/nature09385 PubMed DOI PMC

Moyo, T., Kitchin D., and Moore P.L.. 2020. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin. Ther. Targets. 24:499–509. 10.1080/14728222.2020.1752183 PubMed DOI PMC

Nabi, R., Moldoveanu Z., Wei Q., Golub E.T., Durkin H.G., Greenblatt R.M., Herold B.C., Nowicki M.J., Kassaye S., Cho M.W., et al. . 2017. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy. PLoS One. 12:e0180245. 10.1371/journal.pone.0180245 PubMed DOI PMC

Nakane, T., Kimanius D., Lindahl E., and Scheres S.H.. 2018. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife. 7:e36861. 10.7554/eLife.36861 PubMed DOI PMC

Niessl, J., Baxter A.E., Mendoza P., Jankovic M., Cohen Y.Z., Butler A.L., Lu C.-L., Dubé M., Shimeliovich I., Gruell H., et al. . 2020. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat. Med. 26:222–227. 10.1038/s41591-019-0747-1 PubMed DOI PMC

Nishimura, Y., and Martin M.A.. 2017. Of mice, macaques, and men: broadly neutralizing antibody immunotherapy for HIV-1. Cell Host Microbe. 22:207–216. 10.1016/j.chom.2017.07.010 PubMed DOI PMC

Pettersen, E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., and Ferrin T.E.. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612. 10.1002/jcc.20084 PubMed DOI

Planchais, C., Kok A., Kanyavuz A., Lorin V., Bruel T., Guivel-Benhassine F., Rollenske T., Prigent J., Hieu T., Prazuck T., et al. . 2019. HIV-1 envelope recognition by polyreactive and cross-reactive intestinal B cells. Cell Rep. 27:572–585.e7. 10.1016/j.celrep.2019.03.032 PubMed DOI PMC

Planque, S., Salas M., Mitsuda Y., Sienczyk M., Escobar M.A., Mooney J.P., Morris M.K., Nishiyama Y., Ghosh D., Kumar A., et al. . 2010. Neutralization of genetically diverse HIV-1 strains by IgA antibodies to the gp120-CD4-binding site from long-term survivors of HIV infection. AIDS. 24:875–884. 10.1097/QAD.0b013e3283376e88 PubMed DOI PMC

Prabakaran, P., and Chowdhury P.S.. 2020. Landscape of non-canonical cysteines in human VH repertoire revealed by immunogenetic analysis. Cell Rep. 31:107831. 10.1016/j.celrep.2020.107831 PubMed DOI PMC

Prigent, J., Jarossay A., Planchais C., Eden C., Dufloo J., Kok A., Lorin V., Vratskikh O., Couderc T., Bruel T., et al. . 2018. Conformational plasticity in broadly neutralizing HIV-1 antibodies triggers polyreactivity. Cell Rep. 23:2568–2581. 10.1016/j.celrep.2018.04.101 PubMed DOI PMC

Prigent, J., Lorin V., Kok A., Hieu T., Bourgeau S., and Mouquet H.. 2016. Scarcity of autoreactive human blood IgA(+) memory B cells. Eur. J. Immunol. 46:2340–2351. 10.1002/eji.201646446 PubMed DOI PMC

Pritchard, L.K., Vasiljevic S., Ozorowski G., Seabright G.E., Cupo A., Ringe R., Kim H.J., Sanders R.W., Doores K.J., Burton D.R., et al. . 2015. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep. 11:1604–1613. 10.1016/j.celrep.2015.05.017 PubMed DOI PMC

Punjani, A., Rubinstein J.L., Fleet D.J., and Brubaker M.A.. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 14:290–296. 10.1038/nmeth.4169 PubMed DOI

Punjani, A., Zhang H., and Fleet D.J.. 2020. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods. 17:1214–1221. 10.1038/s41592-020-00990-8 PubMed DOI

Rohou, A., and Grigorieff N.. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192:216–221. 10.1016/j.jsb.2015.08.008 PubMed DOI PMC

Ruiz, M.J., Ghiglione Y., Falivene J., Laufer N., Holgado M.P., Socias M.E., Cahn P., Sued O., Giavedoni L., Salomon H., et al. . 2016. Env-specific IgA from viremic HIV-infected subjects compromises antibody-dependent cellular cytotoxicity. J. Virol. 90:670–681. 10.1128/JVI.02363-15 PubMed DOI PMC

Santra, S., Tomaras G.D., Warrier R., Nicely N.I., Liao H.X., Pollara J., Liu P., Alam S.M., Zhang R., Cocklin S.L., et al. . 2015. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques. PLoS Pathog. 11:e1005042. 10.1371/journal.ppat.1005042 PubMed DOI PMC

Sarzotti-Kelsoe, M., Daniell X., Todd C.A., Bilska M., Martelli A., LaBranche C., Perez L.G., Ochsenbauer C., Kappes J.C., Rountree W., et al. . 2014. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J. Immunol. Methods. 409:147–160. 10.1016/j.jim.2014.02.013 PubMed DOI PMC

Scheepers, C., Bekker V., Anthony C., Richardson S.I., Oosthuysen B., Moyo T., Kgagudi P., Kitchin D., Nonyane M., York T., et al. . 2020. Antibody isotype switching as a mechanism to counter HIV neutralization escape. Cell Rep. 33:108430. 10.1016/j.celrep.2020.108430 PubMed DOI PMC

Scheid, J.F., Mouquet H., Ueberheide B., Diskin R., Klein F., Oliveira T.Y.K., Pietzsch J., Fenyo D., Abadir A., Velinzon K., et al. . 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 333:1633–1637. 10.1126/science.1207227 PubMed DOI PMC

Schommers, P., Gruell H., Abernathy M.E., Tran M.-K., Dingens A.S., Gristick H.B., Barnes C.O., Schoofs T., Schlotz M., Vanshylla K., et al. . 2020. Restriction of HIV-1 escape by a highly broad and potent neutralizing antibody. Cell. 180:471–489.e22. 10.1016/j.cell.2020.01.010 PubMed DOI PMC

Schoofs, T., Barnes C.O., Suh-Toma N., Golijanin J., Schommers P., Gruell H., West A.P. Jr., Bach F., Lee Y.E., Nogueira L., et al. . 2019. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 50:1513–1529.e9. 10.1016/j.immuni.2019.04.014 PubMed DOI PMC

Seabright, G.E., Cottrell C.A., van Gils M.J., D’Addabbo A., Harvey D.J., Behrens A.-J., Allen J.D., Watanabe Y., Scaringi N., Polveroni T.M., et al. . 2020. Networks of HIV-1 envelope glycans maintain antibody epitopes in the face of glycan additions and deletions. Structure. 28:897–909.e6. 10.1016/j.str.2020.04.022 PubMed DOI PMC

Seaton, K.E., Deal A., Han X., Li S.S., Clayton A., Heptinstall J., Duerr A., Allen M.A., Shen X., Sawant S., et al. . 2021. Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. NPJ Vaccin. 6:56. 10.1038/s41541-021-00305-8 PubMed DOI PMC

Simonich, C.A., Williams K.L., Verkerke H.P., Williams J.A., Nduati R., Lee K.K., and Overbaugh J.. 2016. HIV-1 neutralizing antibodies with limited hypermutation from an infant. Cell. 166:77–87. 10.1016/j.cell.2016.05.055 PubMed DOI PMC

Sok, D., Pauthner M., Briney B., Lee J.H., Saye-Francisco K.L., Hsueh J., Ramos A., Le K.M., Jones M., Jardine J.G., et al. . 2016. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity. 45:31–45. 10.1016/j.immuni.2016.06.026 PubMed DOI PMC

Sok, D., van Gils M.J., Pauthner M., Julien J.P., Saye-Francisco K.L., Hsueh J., Briney B., Lee J.H., Le K.M., Lee P.S., et al. . 2014. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc. Natl. Acad. Sci. USA. 111:17624–17629. 10.1073/pnas.1415789111 PubMed DOI PMC

Steffen, U., Koeleman C.A., Sokolova M.V., Bang H., Kleyer A., Rech J., Unterweger H., Schicht M., Garreis F., Hahn J., et al. . 2020. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11:120. 10.1038/s41467-019-13992-8 PubMed DOI PMC

Stephenson, K.E., Wagh K., Korber B., and Barouch D.H.. 2020. Vaccines and broadly neutralizing antibodies for HIV-1 prevention. Annu. Rev. Immunol. 38:673–703. 10.1146/annurev-immunol-080219-023629 PubMed DOI PMC

Tay, M.Z., Liu P., Williams L.D., McRaven M.D., Sawant S., Gurley T.C., Xu T.T., Dennison S.M., Liao H.X., Chenine A.L., et al. . 2016. Antibody-mediated internalization of infectious HIV-1 virions differs among antibody isotypes and subclasses. PLoS Pathog. 12:e1005817. 10.1371/journal.ppat.1005817 PubMed DOI PMC

Tiller, T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., and Wardemann H.. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol.Methods. 329:112–124. 10.1016/j.jim.2007.09.017 PubMed DOI PMC

Tomaras, G.D., Ferrari G., Shen X., Alam S.M., Liao H.X., Pollara J., Bonsignori M., Moody M.A., Fong Y., Chen X., et al. . 2013. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc. Natl. Acad. Sci. USA. 110:9019–9024. 10.1073/pnas.1301456110 PubMed DOI PMC

Trama, A.M., Moody M.A., Alam S.M., Jaeger F.H., Lockwood B., Parks R., Lloyd K.E., Stolarchuk C., Scearce R., Foulger A., et al. . 2014. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 16:215–226. 10.1016/j.chom.2014.07.003 PubMed DOI PMC

Trkola, A., Purtscher M., Muster T., Ballaun C., Buchacher A., Sullivan N., Srinivasan K., Sodroski J., Moore J.P., and Katinger H.. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:1100–1108. 10.1128/JVI.70.2.1100-1108.1996 PubMed DOI PMC

van Royen-Kerkhof, A., Sanders E.A., Walraven V., Voorhorst-Ogink M., Saeland E., Teeling J.L., Gerritsen A., van Dijk M.A., Kuis W., Rijkers G.T., et al. . 2005. A novel human CD32 mAb blocks experimental immune haemolytic anaemia in FcgammaRIIA transgenic mice. Br. J. Haematol. 130:130–137. 10.1111/j.1365-2141.2005.05571.x PubMed DOI

Victora, G.D., and Mouquet H.. 2018. What are the primary limitations in B cell affinity maturation, and how much affinity maturation can we drive with vaccination? Lessons from the antibody response to HIV-1. Cold Spring Harb. Perspect. Biol. 10:a029389. 10.1101/cshperspect.a029389 PubMed DOI PMC

Walker, L.M., Huber M., Doores K.J., Falkowska E., Pejchal R., Julien J.P., Wang S.K., Ramos A., Chan-Hui P.Y., Moyle M., et al. . 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 477:466–470. 10.1038/nature10373 PubMed DOI PMC

Wardemann, H., and Kofer J.. 2013. Expression cloning of human B cell immunoglobulins. Methods Mol. Biol. 971:93–111. 10.1007/978-1-62703-269-8_5 PubMed DOI

Wardemann, H., Yurasov S., Schaefer A., Young J.W., Meffre E., and Nussenzweig M.C.. 2003. Predominant autoantibody production by early human B cell precursors. Science. 301:1374–1377. 10.1126/science.1086907 PubMed DOI

Williams, C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., et al. . 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27:293–315. 10.1002/pro.3330 PubMed DOI PMC

Williams, W.B., Liao H.X., Moody M.A., Kepler T.B., Alam S.M., Gao F., Wiehe K., Trama A.M., Jones K., Zhang R., et al. . 2015. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 349:aab1253. 10.1126/science.aab1253 PubMed DOI PMC

Wills, S., Hwang K.K., Liu P., Dennison S.M., Tay M.Z., Shen X., Pollara J., Lucas J.T., Parks R., Rerks-Ngarm S., et al. . 2018. HIV-1-Specific IgA monoclonal antibodies from an HIV-1 vaccinee mediate galactosylceramide blocking and phagocytosis. J. Virol. 92:e01552-17. 10.1128/JVI.01552-17 PubMed DOI PMC

Woof, J.M., and Mestecky J.. 2015. Chapter 17 - mucosal immunoglobulins. In Mucosal Immunology. Mestecky J., Strober W., Russell M.W., Kelsall B.L., Cheroutre H., and Lambrecht B.N., editors. Fourth Edition. Academic Press, Boston. 287–324

Wu, X., Zhang Z., Schramm C.A., Joyce M.G., Kwon Y.D., Zhou T., Sheng Z., Zhang B., O’Dell S., McKee K., et al. . 2015. Maturation and diversity of the VRC01-antibody lineage over 15 Years of chronic HIV-1 infection. Cell. 161:470–485. 10.1016/j.cell.2015.03.004 PubMed DOI PMC

Yang, X., Farzan M., Wyatt R., and Sodroski J.. 2000. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 74:5716–5725. 10.1128/jvi.74.12.5716-5725.2000 PubMed DOI PMC

Zhang, J., Kobert K., Flouri T., and Stamatakis A.. 2013. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 30:614–620. 10.1093/bioinformatics/btt593 PubMed DOI PMC

Zheng, S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., and Agard D.A.. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 14:331–332. 10.1038/nmeth.4193 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...