Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NIH HHS - United States
ERC-2013-StG 337146
European Research Council - International
PubMed
35230385
PubMed Central
PMC8932546
DOI
10.1084/jem.20212045
PII: 213042
Knihovny.cz E-resources
- MeSH
- Epitopes MeSH
- env Gene Products, Human Immunodeficiency Virus MeSH
- HIV Infections * MeSH
- HIV Antibodies MeSH
- HIV-1 * MeSH
- Immunoglobulin A MeSH
- Immunoglobulin G MeSH
- Humans MeSH
- Mice MeSH
- Antibodies, Neutralizing MeSH
- Elite Controllers MeSH
- Polysaccharides MeSH
- Broadly Neutralizing Antibodies MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Epitopes MeSH
- env Gene Products, Human Immunodeficiency Virus MeSH
- HIV Antibodies MeSH
- Immunoglobulin A MeSH
- Immunoglobulin G MeSH
- Antibodies, Neutralizing MeSH
- Polysaccharides MeSH
- Broadly Neutralizing Antibodies MeSH
Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.
Beth Israel Deaconess Medical Center Boston MA
Central European Institute of Technology Masaryk University Brno Czech Republic
Centre national de la recherche scientifique URA3015 Paris France
Department of Microbiology and Immunology Weill Medical College of Cornell University New York NY
Imagopole Plate Forme de Microscopie Ultrastructurale and UMR 3528 Institut Pasteur Paris France
Innate Immunity Unit Department of Immunology Institut Pasteur Paris France
Institut national de la santé et de la recherche médicale U1222 Paris France
Institut national de la santé et de la recherche médicale U1223 Paris France
Laboratory of Humoral Immunology Department of Immunology Institut Pasteur Paris France
Laboratory of Molecular Immunology The Rockefeller University New York NY
Ragon Institute of Massachusetts General Hospital MIT and Harvard Cambridge MA
Structural Virology Unit Department of Virology Institut Pasteur Paris France
Université de Paris Sorbonne Paris Cité Paris France
Université de Tours Institut national de la santé et de la recherche médicale U1259 Tours France
Virus and Immunity Unit Department of Virology Institut Pasteur Paris France
See more in PubMed
Anthony, C., York T., Bekker V., Matten D., Selhorst P., Ferreria R.C., Garrett N.J., Karim S.S.A., Morris L., Wood N.T., et al. . 2017. Cooperation between strain-specific and broadly neutralizing responses limited viral escape and prolonged the exposure of the broadly neutralizing epitope. J. Virol. 91:e00828-17. 10.1128/jvi.00828-17 PubMed DOI PMC
Astronomo, R.D., Santra S., Ballweber-Fleming L., Westerberg K.G., Mach L., Hensley-McBain T., Sutherland L., Mildenberg B., Morton G., Yates N.L., et al. . 2016. Neutralization takes precedence over IgG or IgA isotype-related functions in mucosal HIV-1 antibody-mediated protection. EBioMed. 14:97–111. 10.1016/j.ebiom.2016.11.024 PubMed DOI PMC
Barnes, C.O., Gristick H.B., Freund N.T., Escolano A., Lyubimov A.Y., Hartweger H., West A.P., Cohen A.E., Nussenzweig M.C., and Bjorkman P.J.. 2018. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat. Comm. 9:1251. 10.1038/s41467-018-03632-y PubMed DOI PMC
Behrens, A.J., Vasiljevic S., Pritchard L.K., Harvey D.J., Andev R.S., Krumm S.A., Struwe W.B., Cupo A., Kumar A., Zitzmann N., et al. . 2016. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 14:2695–2706. 10.1016/j.celrep.2016.02.058 PubMed DOI PMC
Black, K.P., Cummins J.E. Jr., and Jackson S.. 1996. Serum and secretory IgA from HIV-infected individuals mediate antibody-dependent cellular cytotoxicity. Clin. Immunol. Immunopathol. 81:182–190. 10.1006/clin.1996.0175 PubMed DOI
Bonsignori, M., Kreider E.F., Fera D., Meyerhoff R.R., Bradley T., Wiehe K., Alam S.M., Aussedat B., Walkowicz W.E., Hwang K.K., et al. . 2017. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci. Transl. Med. 9:eaai7514. 10.1126/scitranslmed.aai7514 PubMed DOI PMC
Bournazos, S., Klein F., Pietzsch J., Seaman M.S., Nussenzweig M.C., and Ravetch J.V.. 2014. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 158:1243–1253. 10.1016/j.cell.2014.08.023 PubMed DOI PMC
Bouvin-Pley, M., Morgand M., Meyer L., Goujard C., Moreau A., Mouquet H., Nussenzweig M., Pace C., Ho D., Bjorkman P.J., et al. . 2014. Drift of the HIV-1 envelope glycoprotein gp120 toward increased neutralization resistance over the course of the epidemic: a comprehensive study using the most potent and broadly neutralizing monoclonal antibodies. J. Virol. 88:13910–13917. 10.1128/JVI.02083-14 PubMed DOI PMC
Bruel, T., Guivel-Benhassine F., Amraoui S., Malbec M., Richard L., Bourdic K., Donahue D.A., Lorin V., Casartelli N., Noel N., et al. . 2016. Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat. Commun. 7:10844. 10.1038/ncomms10844 PubMed DOI PMC
Bruel, T., Guivel-Benhassine F., Lorin V., Lortat-Jacob H., Baleux F., Bourdic K., Noel N., Lambotte O., Mouquet H., and Schwartz O.. 2017. Lack of ADCC breadth of human nonneutralizing anti-HIV-1 antibodies. J. Virol. 91:e02440-16. 10.1128/JVI.02440-16 PubMed DOI PMC
Calarese, D.A., Scanlan C.N., Zwick M.B., Deechongkit S., Mimura Y., Kunert R., Zhu P., Wormald M.R., Stanfield R.L., Roux K.H., et al. . 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science. 300:2065–2071. 10.1126/science.1083182 PubMed DOI
Caskey, M., Klein F., and Nussenzweig M.C.. 2019. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25:547–553. 10.1038/s41591-019-0412-8 PubMed DOI PMC
Cheeseman, H.M., Carias A.M., Evans A.B., Olejniczak N.J., Ziprin P., King D.F., Hope T.J., and Shattock R.J.. 2016. Expression profile of human Fc receptors in mucosal tissue: Implications for antibody-dependent cellular effector functions targeting HIV-1 transmission. PLoS One. 11:e0154656. 10.1371/journal.pone.0154656 PubMed DOI PMC
Cheeseman, H.M., Olejniczak N.J., Rogers P.M., Evans A.B., King D.F.L., Ziprin P., Liao H.X., Haynes B.F., and Shattock R.J.. 2017. Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies. J. Virol. 91:e01762-16. 10.1128/JVI.01762-16 PubMed DOI PMC
Daniels, C.N., and Saunders K.O.. 2019. Antibody responses to the HIV-1 envelope high mannose patch. Adv. Immunol. 143:11–73. 10.1016/bs.ai.2019.08.002 PubMed DOI PMC
deCamp, A., Hraber P., Bailer R.T., Seaman M.S., Ochsenbauer C., Kappes J., Gottardo R., Edlefsen P., Self S., Tang H., et al. . 2013. Global panel of HIV-1 env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 88:2489–2507. 10.1128/JVI.02853-13 PubMed DOI PMC
Doria-Rose, N.A., and Landais E.. 2019. Coevolution of HIV-1 and broadly neutralizing antibodies. Curr. Opin HIV AIDS. 14:286–293. 10.1097/COH.0000000000000550 PubMed DOI PMC
Doria-Rose, N.A., Schramm C.A., Gorman J., Moore P.L., Bhiman J.N., DeKosky B.J., Ernandes M.J., Georgiev I.S., Kim H.J., Pancera M., et al. . 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature. 509:55–62. 10.1038/nature13036 PubMed DOI PMC
Duchemin, M., Khamassi M., Xu L., Tudor D., and Bomsel M.. 2018. IgA targeting human immunodeficiency virus-1 envelope gp41 triggers antibody-dependent cellular cytotoxicity cross-clade and cooperates with gp41-specific IgG to increase cell lysis. Front Immunol. 9:244. 10.3389/fimmu.2018.00244 PubMed DOI PMC
Duchemin, M., Tudor D., Cottignies-Calamarte A., and Bomsel M.. 2020. Antibody-dependent cellular phagocytosis of HIV-1-Infected cells is efficiently triggered by IgA targeting HIV-1 envelope subunit gp41. Front Immunol. 11:1141. 10.3389/fimmu.2020.01141 PubMed DOI PMC
Emsley, P., Lohkamp B., Scott W.G., and Cowtan K.. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66:486–501. 10.1107/S0907444910007493 PubMed DOI PMC
Fischinger, S., Dolatshahi S., Jennewein M.F., Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Michael N., Vasan S., Ackerman M.E., Streeck H., and Alter G.. 2020. IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees. JCI Insight. 5:e140925. 10.1172/jci.insight.140925 PubMed DOI PMC
Freund, N.T., Wang H., Scharf L., Nogueira L., Horwitz J.A., Bar-On Y., Golijanin J., Sievers S.A., Sok D., Cai H., et al. . 2017. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci. Transl. Med. 9:eaal2144. 10.1126/scitranslmed.aal2144 PubMed DOI PMC
Gao, F., Bonsignori M., Liao H.X., Kumar A., Xia S.M., Lu X., Cai F., Hwang K.K., Song H., Zhou T., et al. . 2014. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell. 158:481–491. 10.1016/j.cell.2014.06.022 PubMed DOI PMC
Garces, F., Lee J.H., de Val N., de la Pena A.T., Kong L., Puchades C., Hua Y., Stanfield R.L., Burton D.R., Moore J.P., et al. . 2015. Affinity maturation of a potent family of HIV antibodies is primarily focused on accommodating or avoiding glycans. Immunity. 43:1053–1063. 10.1016/j.immuni.2015.11.007 PubMed DOI PMC
Gayet, R., Michaud E., Nicoli F., Chanut B., Paul M., Rochereau N., Guillon C., He Z., Papagno L., Bioley G., et al. . 2020. Impact of IgA isoforms on their ability to activate dendritic cells and to prime T cells. Eur. J. Immunol. 50:1295–1306. 10.1002/eji.201948177 PubMed DOI
Gray, E.S., Moody M.A., Wibmer C.K., Chen X., Marshall D., Amos J., Moore P.L., Foulger A., Yu J.S., Lambson B., et al. . 2011. Isolation of a monoclonal antibody that targets the alpha-2 helix of gp120 and represents the initial autologous neutralizing-antibody response in an HIV-1 subtype C-infected individual. J. Virol. 85:7719–7729. 10.1128/JVI.00563-11 PubMed DOI PMC
Huang, J., Kang B.H., Pancera M., Lee J.H., Tong T., Feng Y., Imamichi H., Georgiev I.S., Chuang G.Y., Druz A., et al. . 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature. 515:138–142. 10.1038/nature13601 PubMed DOI PMC
Jia, M., Liberatore R.A., Guo Y., Chan K.W., Pan R., Lu H., Waltari E., Mittler E., Chandran K., Finzi A., et al. . 2020. VSV-displayed HIV-1 envelope identifies broadly neutralizing antibodies class-switched to IgG and IgA. Cell Host Microbe. 27:963–975.e5. 10.1016/j.chom.2020.03.024 PubMed DOI PMC
Kelley, L.A., Mezulis S., Yates C.M., Wass M.N., and Sternberg M.J.. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–858. 10.1038/nprot.2015.053 PubMed DOI PMC
Klein, F., Gaebler C., Mouquet H., Sather D.N., Lehmann C., Scheid J.F., Kraft Z., Liu Y., Pietzsch J., Hurley A., et al. . 2012. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209:1469–1479. 10.1084/jem.20120423 PubMed DOI PMC
Klein, F., Mouquet H., Dosenovic P., Scheid J.F., Scharf L., and Nussenzweig M.C.. 2013. Antibodies in HIV-1 vaccine development and therapy. Science. 341:1199–1204. 10.1126/science.1241144 PubMed DOI PMC
Kong, L., Torrents de la Peña A., Deller M.C., Garces F., Sliepen K., Hua Y., Stanfield R.L., Sanders R.W., and Wilson I.A.. 2015a. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallogr. D Biol. Crystallogr. 71:2099–2108. 10.1107/S1399004715013917 PubMed DOI PMC
Kong, L., Wilson I.A., and Kwong P.D.. 2015b. Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262. Proteins. 83:590–596. 10.1002/prot.24747 PubMed DOI PMC
Krebs, S.J., Kwon Y.D., Schramm C.A., Law W.H., Donofrio G., Zhou K.H., Gift S., Dussupt V., Georgiev I.S., Schatzle S., et al. . 2019. Longitudinal analysis reveals early development of three MPER-directed neutralizing antibody lineages from an HIV-1-Infected individual. Immunity. 50:677–691.e13. 10.1016/j.immuni.2019.02.008 PubMed DOI PMC
Kumar, S., Ju B., Shapero B., Lin X., Ren L., Zhang L., Li D., Zhou Z., Feng Y., Sou C., et al. . 2020. A VH1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. Sci. Adv. 6:eabb1328. 10.1126/sciadv.abb1328 PubMed DOI PMC
Kumar, S., Panda H., Makhdoomi M.A., Mishra N., Safdari H.A., Chawla H., Aggarwal H., Reddy E.S., Lodha R., Kumar Kabra S., et al. . 2019. An HIV-1 broadly neutralizing antibody from a clade C-infected pediatric elite neutralizer potently neutralizes the contemporaneous and autologous evolving viruses. J. Virol. 93:e01495-18. 10.1128/JVI.01495-18 PubMed DOI PMC
Kwong, P.D., and Mascola J.R.. 2018. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity. 48:855–871. 10.1016/j.immuni.2018.04.029 PubMed DOI
Li, M., Gao F., Mascola J.R., Stamatatos L., Polonis V.R., Koutsoukos M., Voss G., Goepfert P., Gilbert P., Greene K.M., et al. . 2005. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79:10108–10125. 10.1128/JVI.79.16.10108-10125.2005 PubMed DOI PMC
Li, Y., Masse-Ranson G., Garcia Z., Bruel T., Kok A., Strick-Marchand H., Jouvion G., Serafini N., Lim A.I., Dusseaux M., et al. . 2018. A human immune system mouse model with robust lymph node development. Nat. Methods. 15:623–630. 10.1038/s41592-018-0071-6 PubMed DOI
Liebschner, D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J., et al. . 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75:861–877. 10.1107/S2059798319011471 PubMed DOI PMC
Longo, N.S., Sutton M.S., Shiakolas A.R., Guenaga J., Jarosinski M.C., Georgiev I.S., McKee K., Bailer R.T., Louder M.K., O’Dell S., et al. . 2016. Multiple antibody lineages in one donor target the glycan-V3 supersite of the HIV-1 envelope glycoprotein and display a preference for quaternary binding. J. Virol. 90:10574–10586. 10.1128/JVI.01012-16 PubMed DOI PMC
Lopez, E., Shattock R.J., Kent S.J., and Chung A.W.. 2018. The multifaceted nature of immunoglobulin A and its complex role in HIV. AIDS Res. Hum. Retroviruses. 34:727–738. 10.1089/AID.2018.0099 PubMed DOI
Lorin, V., Malbec M., Eden C., Bruel T., Porrot F., Seaman M.S., Schwartz O., and Mouquet H.. 2017. Broadly neutralizing antibodies suppress post-transcytosis HIV-1 infectivity. Mucosal Immunol. 10:814–826. 10.1038/mi.2016.106 PubMed DOI
Lorin, V., and Mouquet H.. 2015. Efficient generation of human IgA monoclonal antibodies. J. Immunol. Methods. 422:102–110. 10.1016/j.jim.2015.04.010 PubMed DOI
Lu, C.L., Murakowski D.K., Bournazos S., Schoofs T., Sarkar D., Halper-Stromberg A., Horwitz J.A., Nogueira L., Golijanin J., Gazumyan A., et al. . 2016. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science. 352:1001–1004. 10.1126/science.aaf1279 PubMed DOI PMC
MacLeod, D.T., Choi N.M., Briney B., Garces F., Ver L.S., Landais E., Murrell B., Wrin T., Kilembe W., Liang C.H., et al. . 2016. Early antibody lineage diversification and independent limb maturation lead to broad HIV-1 neutralization targeting the env high-mannose patch. Immunity. 44:1215–1226. 10.1016/j.immuni.2016.04.016 PubMed DOI PMC
Magri, G., and Cerutti A.. 2020. IgA summons IgG to take a hit at HIV-1. Cell Host Microbe. 27:854–856. 10.1016/j.chom.2020.05.017 PubMed DOI PMC
Masse-Ranson, G., Dusseaux M., Fiquet O., Darche S., Boussand M., Li Y., Lopez-Lastra S., Legrand N., Corcuff E., Toubert A., et al. . 2019. Accelerated thymopoiesis and improved T-cell responses in HLA-A2/-DR2 transgenic BRGS-based human immune system mice. Eur. J. Immunol. 49:954–965. 10.1002/eji.201848001 PubMed DOI
McCoy, L.E. 2018. The expanding array of HIV broadly neutralizing antibodies. Retrovirology. 15:70. 10.1186/s12977-018-0453-y PubMed DOI PMC
Meffre, E., Schaefer A., Wardemann H., Wilson P., Davis E., and Nussenzweig M.C.. 2004. Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J. Exp. Med. 199:145–150. 10.1084/jem.20031550 PubMed DOI PMC
Moreau, H.D., and Bousso P.. 2014. Disc. Intravital. 1:27–31. 10.4161/intv.21896 DOI
Mouquet, H. 2014. Antibody B cell responses in HIV-1 infection. Trends Immunol. 35:549–561. 10.1016/j.it.2014.08.007 PubMed DOI
Mouquet, H., Klein F., Scheid J.F., Warncke M., Pietzsch J., Oliveira T.Y., Velinzon K., Seaman M.S., and Nussenzweig M.C.. 2011. Memory B cell antibodies to HIV-1 gp140 cloned from individuals infected with clade A and B viruses. PLoS One. 6:e24078. 10.1371/journal.pone.0024078 PubMed DOI PMC
Mouquet, H., Scharf L., Euler Z., Liu Y., Eden C., Scheid J.F., Halper-Stromberg A., Gnanapragasam P.N., Spencer D.I., Seaman M.S., et al. . 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl. Acad. Sci. USA. 109:E3268–E3277. 10.1073/pnas.1217207109 PubMed DOI PMC
Mouquet, H., Scheid J.F., Zoller M.J., Krogsgaard M., Ott R.G., Shukair S., Artyomov M.N., Pietzsch J., Connors M., Pereyra F., et al. . 2010. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature. 467:591–595. 10.1038/nature09385 PubMed DOI PMC
Moyo, T., Kitchin D., and Moore P.L.. 2020. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin. Ther. Targets. 24:499–509. 10.1080/14728222.2020.1752183 PubMed DOI PMC
Nabi, R., Moldoveanu Z., Wei Q., Golub E.T., Durkin H.G., Greenblatt R.M., Herold B.C., Nowicki M.J., Kassaye S., Cho M.W., et al. . 2017. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy. PLoS One. 12:e0180245. 10.1371/journal.pone.0180245 PubMed DOI PMC
Nakane, T., Kimanius D., Lindahl E., and Scheres S.H.. 2018. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife. 7:e36861. 10.7554/eLife.36861 PubMed DOI PMC
Niessl, J., Baxter A.E., Mendoza P., Jankovic M., Cohen Y.Z., Butler A.L., Lu C.-L., Dubé M., Shimeliovich I., Gruell H., et al. . 2020. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat. Med. 26:222–227. 10.1038/s41591-019-0747-1 PubMed DOI PMC
Nishimura, Y., and Martin M.A.. 2017. Of mice, macaques, and men: broadly neutralizing antibody immunotherapy for HIV-1. Cell Host Microbe. 22:207–216. 10.1016/j.chom.2017.07.010 PubMed DOI PMC
Pettersen, E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., and Ferrin T.E.. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612. 10.1002/jcc.20084 PubMed DOI
Planchais, C., Kok A., Kanyavuz A., Lorin V., Bruel T., Guivel-Benhassine F., Rollenske T., Prigent J., Hieu T., Prazuck T., et al. . 2019. HIV-1 envelope recognition by polyreactive and cross-reactive intestinal B cells. Cell Rep. 27:572–585.e7. 10.1016/j.celrep.2019.03.032 PubMed DOI PMC
Planque, S., Salas M., Mitsuda Y., Sienczyk M., Escobar M.A., Mooney J.P., Morris M.K., Nishiyama Y., Ghosh D., Kumar A., et al. . 2010. Neutralization of genetically diverse HIV-1 strains by IgA antibodies to the gp120-CD4-binding site from long-term survivors of HIV infection. AIDS. 24:875–884. 10.1097/QAD.0b013e3283376e88 PubMed DOI PMC
Prabakaran, P., and Chowdhury P.S.. 2020. Landscape of non-canonical cysteines in human VH repertoire revealed by immunogenetic analysis. Cell Rep. 31:107831. 10.1016/j.celrep.2020.107831 PubMed DOI PMC
Prigent, J., Jarossay A., Planchais C., Eden C., Dufloo J., Kok A., Lorin V., Vratskikh O., Couderc T., Bruel T., et al. . 2018. Conformational plasticity in broadly neutralizing HIV-1 antibodies triggers polyreactivity. Cell Rep. 23:2568–2581. 10.1016/j.celrep.2018.04.101 PubMed DOI PMC
Prigent, J., Lorin V., Kok A., Hieu T., Bourgeau S., and Mouquet H.. 2016. Scarcity of autoreactive human blood IgA(+) memory B cells. Eur. J. Immunol. 46:2340–2351. 10.1002/eji.201646446 PubMed DOI PMC
Pritchard, L.K., Vasiljevic S., Ozorowski G., Seabright G.E., Cupo A., Ringe R., Kim H.J., Sanders R.W., Doores K.J., Burton D.R., et al. . 2015. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep. 11:1604–1613. 10.1016/j.celrep.2015.05.017 PubMed DOI PMC
Punjani, A., Rubinstein J.L., Fleet D.J., and Brubaker M.A.. 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 14:290–296. 10.1038/nmeth.4169 PubMed DOI
Punjani, A., Zhang H., and Fleet D.J.. 2020. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods. 17:1214–1221. 10.1038/s41592-020-00990-8 PubMed DOI
Rohou, A., and Grigorieff N.. 2015. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192:216–221. 10.1016/j.jsb.2015.08.008 PubMed DOI PMC
Ruiz, M.J., Ghiglione Y., Falivene J., Laufer N., Holgado M.P., Socias M.E., Cahn P., Sued O., Giavedoni L., Salomon H., et al. . 2016. Env-specific IgA from viremic HIV-infected subjects compromises antibody-dependent cellular cytotoxicity. J. Virol. 90:670–681. 10.1128/JVI.02363-15 PubMed DOI PMC
Santra, S., Tomaras G.D., Warrier R., Nicely N.I., Liao H.X., Pollara J., Liu P., Alam S.M., Zhang R., Cocklin S.L., et al. . 2015. Human non-neutralizing HIV-1 envelope monoclonal antibodies limit the number of founder viruses during SHIV mucosal infection in rhesus macaques. PLoS Pathog. 11:e1005042. 10.1371/journal.ppat.1005042 PubMed DOI PMC
Sarzotti-Kelsoe, M., Daniell X., Todd C.A., Bilska M., Martelli A., LaBranche C., Perez L.G., Ochsenbauer C., Kappes J.C., Rountree W., et al. . 2014. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J. Immunol. Methods. 409:147–160. 10.1016/j.jim.2014.02.013 PubMed DOI PMC
Scheepers, C., Bekker V., Anthony C., Richardson S.I., Oosthuysen B., Moyo T., Kgagudi P., Kitchin D., Nonyane M., York T., et al. . 2020. Antibody isotype switching as a mechanism to counter HIV neutralization escape. Cell Rep. 33:108430. 10.1016/j.celrep.2020.108430 PubMed DOI PMC
Scheid, J.F., Mouquet H., Ueberheide B., Diskin R., Klein F., Oliveira T.Y.K., Pietzsch J., Fenyo D., Abadir A., Velinzon K., et al. . 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 333:1633–1637. 10.1126/science.1207227 PubMed DOI PMC
Schommers, P., Gruell H., Abernathy M.E., Tran M.-K., Dingens A.S., Gristick H.B., Barnes C.O., Schoofs T., Schlotz M., Vanshylla K., et al. . 2020. Restriction of HIV-1 escape by a highly broad and potent neutralizing antibody. Cell. 180:471–489.e22. 10.1016/j.cell.2020.01.010 PubMed DOI PMC
Schoofs, T., Barnes C.O., Suh-Toma N., Golijanin J., Schommers P., Gruell H., West A.P. Jr., Bach F., Lee Y.E., Nogueira L., et al. . 2019. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 50:1513–1529.e9. 10.1016/j.immuni.2019.04.014 PubMed DOI PMC
Seabright, G.E., Cottrell C.A., van Gils M.J., D’Addabbo A., Harvey D.J., Behrens A.-J., Allen J.D., Watanabe Y., Scaringi N., Polveroni T.M., et al. . 2020. Networks of HIV-1 envelope glycans maintain antibody epitopes in the face of glycan additions and deletions. Structure. 28:897–909.e6. 10.1016/j.str.2020.04.022 PubMed DOI PMC
Seaton, K.E., Deal A., Han X., Li S.S., Clayton A., Heptinstall J., Duerr A., Allen M.A., Shen X., Sawant S., et al. . 2021. Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. NPJ Vaccin. 6:56. 10.1038/s41541-021-00305-8 PubMed DOI PMC
Simonich, C.A., Williams K.L., Verkerke H.P., Williams J.A., Nduati R., Lee K.K., and Overbaugh J.. 2016. HIV-1 neutralizing antibodies with limited hypermutation from an infant. Cell. 166:77–87. 10.1016/j.cell.2016.05.055 PubMed DOI PMC
Sok, D., Pauthner M., Briney B., Lee J.H., Saye-Francisco K.L., Hsueh J., Ramos A., Le K.M., Jones M., Jardine J.G., et al. . 2016. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity. 45:31–45. 10.1016/j.immuni.2016.06.026 PubMed DOI PMC
Sok, D., van Gils M.J., Pauthner M., Julien J.P., Saye-Francisco K.L., Hsueh J., Briney B., Lee J.H., Le K.M., Lee P.S., et al. . 2014. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc. Natl. Acad. Sci. USA. 111:17624–17629. 10.1073/pnas.1415789111 PubMed DOI PMC
Steffen, U., Koeleman C.A., Sokolova M.V., Bang H., Kleyer A., Rech J., Unterweger H., Schicht M., Garreis F., Hahn J., et al. . 2020. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11:120. 10.1038/s41467-019-13992-8 PubMed DOI PMC
Stephenson, K.E., Wagh K., Korber B., and Barouch D.H.. 2020. Vaccines and broadly neutralizing antibodies for HIV-1 prevention. Annu. Rev. Immunol. 38:673–703. 10.1146/annurev-immunol-080219-023629 PubMed DOI PMC
Tay, M.Z., Liu P., Williams L.D., McRaven M.D., Sawant S., Gurley T.C., Xu T.T., Dennison S.M., Liao H.X., Chenine A.L., et al. . 2016. Antibody-mediated internalization of infectious HIV-1 virions differs among antibody isotypes and subclasses. PLoS Pathog. 12:e1005817. 10.1371/journal.ppat.1005817 PubMed DOI PMC
Tiller, T., Meffre E., Yurasov S., Tsuiji M., Nussenzweig M.C., and Wardemann H.. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol.Methods. 329:112–124. 10.1016/j.jim.2007.09.017 PubMed DOI PMC
Tomaras, G.D., Ferrari G., Shen X., Alam S.M., Liao H.X., Pollara J., Bonsignori M., Moody M.A., Fong Y., Chen X., et al. . 2013. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc. Natl. Acad. Sci. USA. 110:9019–9024. 10.1073/pnas.1301456110 PubMed DOI PMC
Trama, A.M., Moody M.A., Alam S.M., Jaeger F.H., Lockwood B., Parks R., Lloyd K.E., Stolarchuk C., Scearce R., Foulger A., et al. . 2014. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe. 16:215–226. 10.1016/j.chom.2014.07.003 PubMed DOI PMC
Trkola, A., Purtscher M., Muster T., Ballaun C., Buchacher A., Sullivan N., Srinivasan K., Sodroski J., Moore J.P., and Katinger H.. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:1100–1108. 10.1128/JVI.70.2.1100-1108.1996 PubMed DOI PMC
van Royen-Kerkhof, A., Sanders E.A., Walraven V., Voorhorst-Ogink M., Saeland E., Teeling J.L., Gerritsen A., van Dijk M.A., Kuis W., Rijkers G.T., et al. . 2005. A novel human CD32 mAb blocks experimental immune haemolytic anaemia in FcgammaRIIA transgenic mice. Br. J. Haematol. 130:130–137. 10.1111/j.1365-2141.2005.05571.x PubMed DOI
Victora, G.D., and Mouquet H.. 2018. What are the primary limitations in B cell affinity maturation, and how much affinity maturation can we drive with vaccination? Lessons from the antibody response to HIV-1. Cold Spring Harb. Perspect. Biol. 10:a029389. 10.1101/cshperspect.a029389 PubMed DOI PMC
Walker, L.M., Huber M., Doores K.J., Falkowska E., Pejchal R., Julien J.P., Wang S.K., Ramos A., Chan-Hui P.Y., Moyle M., et al. . 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 477:466–470. 10.1038/nature10373 PubMed DOI PMC
Wardemann, H., and Kofer J.. 2013. Expression cloning of human B cell immunoglobulins. Methods Mol. Biol. 971:93–111. 10.1007/978-1-62703-269-8_5 PubMed DOI
Wardemann, H., Yurasov S., Schaefer A., Young J.W., Meffre E., and Nussenzweig M.C.. 2003. Predominant autoantibody production by early human B cell precursors. Science. 301:1374–1377. 10.1126/science.1086907 PubMed DOI
Williams, C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., et al. . 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27:293–315. 10.1002/pro.3330 PubMed DOI PMC
Williams, W.B., Liao H.X., Moody M.A., Kepler T.B., Alam S.M., Gao F., Wiehe K., Trama A.M., Jones K., Zhang R., et al. . 2015. HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science. 349:aab1253. 10.1126/science.aab1253 PubMed DOI PMC
Wills, S., Hwang K.K., Liu P., Dennison S.M., Tay M.Z., Shen X., Pollara J., Lucas J.T., Parks R., Rerks-Ngarm S., et al. . 2018. HIV-1-Specific IgA monoclonal antibodies from an HIV-1 vaccinee mediate galactosylceramide blocking and phagocytosis. J. Virol. 92:e01552-17. 10.1128/JVI.01552-17 PubMed DOI PMC
Woof, J.M., and Mestecky J.. 2015. Chapter 17 - mucosal immunoglobulins. In Mucosal Immunology. Mestecky J., Strober W., Russell M.W., Kelsall B.L., Cheroutre H., and Lambrecht B.N., editors. Fourth Edition. Academic Press, Boston. 287–324
Wu, X., Zhang Z., Schramm C.A., Joyce M.G., Kwon Y.D., Zhou T., Sheng Z., Zhang B., O’Dell S., McKee K., et al. . 2015. Maturation and diversity of the VRC01-antibody lineage over 15 Years of chronic HIV-1 infection. Cell. 161:470–485. 10.1016/j.cell.2015.03.004 PubMed DOI PMC
Yang, X., Farzan M., Wyatt R., and Sodroski J.. 2000. Characterization of stable, soluble trimers containing complete ectodomains of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 74:5716–5725. 10.1128/jvi.74.12.5716-5725.2000 PubMed DOI PMC
Zhang, J., Kobert K., Flouri T., and Stamatakis A.. 2013. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 30:614–620. 10.1093/bioinformatics/btt593 PubMed DOI PMC
Zheng, S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., and Agard D.A.. 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 14:331–332. 10.1038/nmeth.4193 PubMed DOI PMC