Simplified Procedure for General Synthesis of Monosubstituted Piperazines-From a Batch Reaction Vessel to a Flow (Microwave) Reactor

. 2020 May 06 ; 25 (9) : . [epub] 20200506

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32384633

Grantová podpora
TG02010067 (MUNI/31/53569/2016) Technology Agency of the Czech Republic

We reported a novel simplified synthetic procedure for the preparation of monosubstituted piperazine derivatives which can now be easily prepared in a one-pot-one-step way from a protonated piperazine with no need of introduction of a protecting group. Reactions, proceeding either at room or higher temperatures in common solvents, involve heterogeneous catalysis by metal ions supported on commercial polymeric resins. A general synthetic scheme was successfully applied to afford a wide range of monosubstituted piperazines. Furthermore, we picked up a set of piperazine derivatives and studied the possibilities of microwave acceleration of given synthetic reactions to make them even more efficient. Our research proceeded from a simple batch technique to the construction of a flow microwave reactor prototype and resulted in promising findings which are summarized and discussed in the article.

Zobrazit více v PubMed

Al-Ghorbani M., Bushra A.B., Zabiulla S., Mamatha S.V., Khanum S.A. Piperazine and Morpholine: Synthetic Preview and Pharmaceutical Applications. J. Chem. Pharm. Res. 2015;7:281–301. doi: 10.5958/0974-360X.2015.00100.6. DOI

Singh K., Siddiqui H.H., Shakya P., Bagga P., Kumar A., Khalid M., Arif M., Alok S. Piperazine–A Biologically Active Scaffold. Int. J. Pharm. Sci. Res. 2015;6:4145–4158. doi: 10.13040/IJPSR.0975-8232.6(10). DOI

Chen L., Chen H., Chen P., Zhang W., Wu C., Sun C., Luo W., Zheng L., Liu Z., Liang G. Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. Eur. J. Med. Chem. 2019;161:22–38. doi: 10.1016/j.ejmech.2018.09.068. PubMed DOI

Szczepańska K., Karcz T., Mogilski S., Siwek A., Kuder K.J., Latacz G., Kubacka M., Hagenow S., Lubelska A., Olejarz A., et al. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. Eur. J. Med. Chem. 2018;152:223–234. doi: 10.1016/j.ejmech.2018.04.043. PubMed DOI

Satoskar K., Bhandarkar B. Pharmacology and Pharmacotherapeutics. 5th ed. Bombay Popular Prakashan Pvt. Ltd.; Bombay, India: 1985.

Lu S., Zhang Y., Liu J., Zhao C., Liu W., Xi R. Preparation of anti-Pefloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Pefloxacin Residue in Chicken Liver. J. Agric. Food Chem. 2006;54:6995–7000. doi: 10.1021/jf061309q. PubMed DOI

Madrid P.B., Polgar W.E., Toll L., Tanga M.J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. Bioorg. Med. Chem. Lett. 2007;17:3014–3017. doi: 10.1016/j.bmcl.2007.03.064. PubMed DOI

Su J., Tang H., McKittrick B.A., Burnett D.A., Zang H., Smith-Torhan A., Fawzi A., Lachowicz J. Modification of the clozapine structure by parallel synthesis. Bioorg. Med. Chem. Lett. 2006;16:4548–4553. doi: 10.1016/j.bmcl.2006.06.034. PubMed DOI

Xiong H., Brugel T.A., Balestra M., Brown D.G., Brush K.A., Hightower C., Hinkley L., Hoesch V., Kang J., Koether G.M., et al. 4-Aryl piperazine and piperidine amides as novel mGluR5 positive allosteric modulators. Bioorg. Med. Chem. Lett. 2010;20:7381–7384. doi: 10.1016/j.bmcl.2010.10.036. PubMed DOI

Reich M., Schunk S., Jostock R., Hees S., Germann T., Engels M.F.-M. Substituted Disulfonamide Compounds. 2010/0152158 A1. U.S. Patent. 2010 Jun 17;

Liu Y., Zhou E., Yu K., Zhu J., Zhang Y., Xie X., Li J., Jiang H. Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules. 2008;13:2426. doi: 10.3390/molecules13102426. PubMed DOI PMC

Liu T., Weng Z., Dong X., Chen L., Ma L., Cen S., Zhou N., Hu Y. Design, Synthesis and Biological Evaluation of Novel Piperazine Derivatives as CCR5 Antagonists. PLoS ONE. 2013;8:e53636. doi: 10.1371/journal.pone.0053636. PubMed DOI PMC

Manetti D., Bartolini A., Borea P.A., Bellucci C., Dei S., Ghelardini C., Gualtieri F., Romanelli M.N., Scapecchi S., Teodori E., et al. Hybridized and isosteric analogues of N1-acetyl-N4-dimethyl-piperazinium iodide (ADMP) and N1-phenyl-N4-dimethyl-piperazinium iodide (DMPP) with central nicotinic action. Bioorg. Med. Chem. 1999;7:457–465. doi: 10.1016/S0968-0896(98)00259-4. PubMed DOI

Scott J.S., Degorce S.L., Anjum R., Culshaw J., Davies R.D.M., Davies N.L., Dillman K.S., Dowling J.E., Drew L., Ferguson A.D., et al. Discovery and Optimization of Pyrrolopyrimidine Inhibitors of Interleukin-1 Receptor Associated Kinase 4 (IRAK4) for the Treatment of Mutant MYD88L265P Diffuse Large B-Cell Lymphoma. J. Med. Chem. 2017;60:10071–10091. doi: 10.1021/acs.jmedchem.7b01290. PubMed DOI

Hashimoto K., Nakamura T., Nakamura K., Kurimoto A., Isobe Y., Ogita H., Millichip I., McInally T., Bonnert R. Novel Adenine Compound. 1939198A1. European Patent. 2008 Jul 2;

Moore T.S., Boyle M., Thorn V.M. N-substituted derivatives of piperazine and ethylenediamine. Part I. The preparation of N-monosubstituted derivatives. J. Chem. Soc. 1929;1929:39–51. doi: 10.1039/JR9290000039. DOI

Baltzly R., Buck J.S., Lorz E., Schön W. The preparation of N-mono-substituted and unsymmetrically disubstituted piperazines. J. Am. Chem. Soc. 1944;66:263–266. doi: 10.1021/ja01230a031. DOI

Caille S., Allgeier A.M., Bernard C., Correll T.L., Cosbie A., Crockett R.D., Cui S., Faul M.M., Hansen K.B., Huggins S., et al. Development of a Factory Process for Omecamtiv Mecarbil, a Novel Cardiac Myosin Activator. Org. Process. Res. Dev. 2019;23:1558–1567. doi: 10.1021/acs.oprd.9b00200. DOI

Capuano B., Crosby I.T., Lloyd E.J., Taylor D.A. Synthesis and Preliminary Pharmacological Evaluation of 4’-Arylmethyl Analogues of Clozapine. I. The Effect of Aromatic Substituents. Austral. J. Chem. 2002;55:565–576. doi: 10.1071/CH02093. DOI

Zhou A., Wu H., Pan J., Wang X., Li J., Wu Z., Hui A. Synthesis and Evaluation of Paeonol Derivatives as Potential Multifunctional Agents for the Treatment of Alzheimer’s Disease. Molecules. 2015;20:1304–1318. doi: 10.3390/molecules20011304. PubMed DOI PMC

Devlin J.P., McNeil D.W., Keirns J.J., Barsumian E.L. Bis(piperazinyl or homopiperazinyl)alkanes. 4,725,597. U.S. Patent. 1988 Feb 16;

Klaveness J., Brudeli B., Levy F.O. 5-HTX Modulators. WO 2007/007072 A1. World Patent. 2007 Jan 18;

Panek D., Więckowska A., Wichur T., Bajda M., Godyń J., Jończyk J., Mika K., Janockova J., Soukup O., Knez D., et al. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem. 2017;125:676–695. doi: 10.1016/j.ejmech.2016.09.078. PubMed DOI

Zhang C., Tan C., Zu X., Zhai X., Liu F., Chu B., Ma X., Chen Y., Gong P., Jiang Y. Exploration of (S)-3-aminopyrrolidine as a potentially interesting scaffold for discovery of novel Abl and PI3K dual inhibitors. Eur. J. Med. Chem. 2011;46:1404–1414. doi: 10.1016/j.ejmech.2011.01.020. PubMed DOI

Ferla S., Manganaro R., Benato S., Paulissen J., Neyts J., Jochmans D., Brancale A., Bassetto M. Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorg. Med. Chem. 2020;28:115401. doi: 10.1016/j.bmc.2020.115401. PubMed DOI

Cunico W., Gomes C.R.B., Moreth M., Manhanini D.P., Figueiredo I.H., Penido C., Henriques M.G.M.O., Varotti F.P., Krettli A.U. Synthesis and antimalarial activity of hydroxyethylpiperazine derivatives. Eur. J. Med. Chem. 2009;44:1363–1368. doi: 10.1016/j.ejmech.2008.04.009. PubMed DOI

Mehanna A.S., Jin Y.K. Design, synthesis, and biological testing of thiosalicylamides as a novel class of calcium channel blockers. Bioorg. Med. Chem. 2005;13:4323–4331. doi: 10.1016/j.bmc.2005.04.012. PubMed DOI

Mehanna A.S., Kim J.T. Calcium Channel Blockers. 2002/0115655 A1. U.S. Patent. 2002 Aug 22;

Peterson Q.P., Hsu D.C., Goode D.R., Novotny C.J., Totten R.K., Hergenrother P.J. Procaspase-3 Activation as an Anti-Cancer Strategy: Structure−Activity Relationship of Procaspase-Activating Compound 1 (PAC-1) and Its Cellular Co-Localization with Caspase-3. J. Med. Chem. 2009;52:5721–5731. doi: 10.1021/jm900722z. PubMed DOI PMC

Hergenrother P.J., Peterson Q.P., Hsu D.C., West D.C., Fan T.M., Novotny C.J. Design, Synthesis and Evaluation of Procaspase Activating Compounds as Personalized Anti-Cancer Drugs. WO 2010/091382 A1. World Patent. 2010 Aug 12;

Li J., Huang L., Dong W., Ge X., Shi C. Aralkyl-Alcohol Piperazine Derivatives and Their Uses as Antidepressant. 2005/0267121 A1. U.S. Patent. 2005 Dec 1;

Wang J., Xia F., Jin W.-B., Guan J.-Y., Zhao H. Efficient synthesis and antioxidant activities of N-heterocyclyl substituted Coenzyme Q analogues. Bioorg. Chem. 2016;68:214–218. doi: 10.1016/j.bioorg.2016.08.008. PubMed DOI

Biannic B., Bozell J.J., Elder T. Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem. 2014;16:3635–3642. doi: 10.1039/C4GC00709C. DOI

Wuts P.G.M., Greene T.W. Greene’s Protective Groups in Organic Synthesis. 4th ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2007.

Morgan B.P., Muci A., Lu P.-P., Qian X., Tochimoto T., Smith W.W., Garard M., Kraynack E., Collibee S., Suehiro I., et al. Discovery of Omecamtiv Mecarbil the First, Selective, Small Molecule Activator of Cardiac Myosin. ACS Med. Chem. Lett. 2010;1:472–477. doi: 10.1021/ml100138q. PubMed DOI PMC

Zulli A.L., Aimone L.D., Mathiasen J.R., Gruner J.A., Raddatz R., Bacon E.R., Hudkins R.L. Substituted phenoxypropyl-(R)-2-methylpyrrolidine aminomethyl ketones as histamine-3 receptor inverse agonists. Bioorg. Med. Chem. Lett. 2012;22:2807–2810. doi: 10.1016/j.bmcl.2012.02.081. PubMed DOI

Sutton J.C., Bolton S.A., Hartl K.S., Huang M.-H., Jacobs G., Meng W., Ogletree M.L., Pi Z., Schumacher W.A., Seiler S.M., et al. Synthesis and SAR of 4-Carboxy-2-azetidinone Mechanism-Based Tryptase Inhibitors. Bioorg. Med. Chem. Lett. 2002;12:3229–3233. doi: 10.1016/S0960-894X(02)00688-1. PubMed DOI

Kantam M.L., Neeraja V., Kavita B., Neelima B., Chaudhuri M.K., Hussain S. Cu(acac)2 Immobilized in Ionic Liquids: A Recoverable and Reusable Catalytic System for Aza-Michael Reactions. Adv. Synth. Catal. 2005;347:763–766. doi: 10.1002/adsc.200404361. DOI

Verma A.K., Attri P., Chopra V., Tiwari R.K., Chandra R. Triethylammonium acetate (TEAA): A recyclable inexpensive ionic liquid promotes the chemoselective aza- and thia-Michael reactions. Mon. Chem. 2008;139:1041–1047. doi: 10.1007/s00706-008-0886-4. DOI

Verma A.K., Kumar R., Chaudhary P., Saxena A., Shankar R., Mozumdar S., Chandra R. Cu-nanoparticles: A chemoselective catalyst for the aza-Michael reactions of N-alkyl- and N-arylpiperazines with acrylonitrile. Tetrahedron Lett. 2005;46:5229–5232. doi: 10.1016/j.tetlet.2005.05.108. DOI

Reddy K.R., Kumar N.S. Cellulose-Supported Copper (0) Catalyst for Aza-Michael Addition. Synlett. 2006;14:2246–2250. doi: 10.1055/s-2006-949623. DOI

Varala R., Sreelatha N., Adapa S.R. Ceric Ammonium Nitrate Catalyzed aza-Michael Addition of Aliphatic Amines to α,β-Unsaturated Carbonyl Compounds and Nitriles in Water. Synlett. 2006;10:1549–1553. doi: 10.1002/chin.200642034. DOI

Bandgar B.P., Pandit S.S. Highly rapid and direct synthesis of monoacylated piperazine derivatives from carboxylic acids under mild conditions. Tetrahedron Lett. 2003;44:3855–3858. doi: 10.1016/S0040-4039(03)00684-1. DOI

Paul S., Nanda P., Gupta R., Loupy A. Ac2O–Py/basic alumina as a versatile reagent for acetylations in solvent-free conditions under microwave irradiation. Tetrahedron Lett. 2002;43:4261–4265. doi: 10.1016/S0040-4039(02)00732-3. DOI

Verma S.K., Acharya B.N., Kaushik M.P. Imidazole-Catalyzed Monoacylation of Symmetrical Diamines. Org. Lett. 2010;12:4232–4235. doi: 10.1021/ol101604q. PubMed DOI

Pazdera P., Zberovská B., Němečková D. Method of Piperazine Direct mono-N-substitution. 304,520. Czech Patent. 2014 Apr 30;

Pazdera P., Zberovská B., Herová D. Method of Direct mono-N-substitution of Piperazine. 305,317. Czech Patent. 2015 Jun 17;

Pazdera P., Zberovská B., Herová D. Process of Direct Piperazine mono-N-substitution. 305,854. Czech Patent. 2016 Mar 2;

Herová D., Pazdera P. Efficient solid support catalyzed mono-aza-Michael addition reactions of piperazine. Mon. Chem. 2015;146:653–661. doi: 10.1007/s00706-014-1379-2. DOI

Němečková D., Pazdera P. A Simplified Protocol for Routine Chemoselective Syntheses of Piperazines Substituted In the 1-Position by an Electron Withdrawing Group. Curr. Org. Synth. 2015;12:173–179. doi: 10.2174/1570179411666141001232644. DOI

Estel L., Poux M., Benamara N., Polaert I. Continuous flow-microwave reactor: Where are we? Chem. Eng. Process. 2017;113:56–64. doi: 10.1016/j.cep.2016.09.022. DOI

Moseley J.D., Lenden P., Lockwood M., Ruda K., Sherlock J.-P., Thomson A.D., Gilday J.P. A Comparison of Commercial Microwave Reactors for Scale-Up within Process Chemistry. Org. Process. Res. Dev. 2008;12:30–40. doi: 10.1021/op700186z. DOI

Biotage AB, Uppsala, Sweden. [(accessed on 4 May 2020)]; Available online: www.biotage.com.

Anton Paar, GmbH, Graz, Austria. [(accessed on 4 May 2020)]; Available online: www.anton-paar.com.

Milestone Srl, Sorisole (BG), Italy. [(accessed on 4 May 2020)]; Available online: www.milestonesrl.com.

Nishioka M., Miyakawa M., Daino Y., Kataoka H., Koda H., Sato K., Suzuki T.M. Single-Mode Microwave Reactor Used for Continuous Flow Reactions under Elevated Pressure. Ind. Eng. Chem. Res. 2013;52:4683–4687. doi: 10.1021/ie400199r. DOI

Macioszczyk J., Rac-Rumijowska O., Słobodzian P., Teterycz H., Malecha K. Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles. Micromachines. 2017;8:318. doi: 10.3390/mi8110318. PubMed DOI PMC

Pazdera P., Zberovská B., Herová D., Datinská V., Šimbera J. Catalyst for Chemical Syntheses Based on Metal Complex and Process for Preparing Thereof. 305 277. Czech Patent. 2015 Jun 3;

Pazdera P., Němečková D., Havránková E., Šimbera J., Ševčík R. A Flow Reactor with a Microwave Source and a Catalytic Bed. 32 201. Czech Patent. 2018 Oct 16;

Pazdera P., Ševčík R. Continuous Reactor with Ultrasonic Source. 24 590. Czech Patent. 2012 Nov 19;

Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. 5th ed. Elsevier Science; London, UK: 2003.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...