Chalcogen Bonding due to the Exo-Substitution of Icosahedral Dicarbaborane
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-08045S
Grantová Agentura České Republiky
PubMed
31340435
PubMed Central
PMC6680755
DOI
10.3390/molecules24142657
PII: molecules24142657
Knihovny.cz E-zdroje
- Klíčová slova
- co-crystal, heteroborane, sigma hole,
- MeSH
- borany chemie MeSH
- chalkogeny chemie MeSH
- krystalizace MeSH
- molekulární modely MeSH
- statická elektřina MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- borany MeSH
- chalkogeny MeSH
Chalcogen atoms are a class of substituents capable of generating inner and outer derivatives of boron clusters. It is well known that chalcogenated boron clusters can form strong σ-hole interactions when a chalcogen atom is a part of an icosahedron. This paper studies σ-hole interactions of dicarbaboranes with two exopolyhedral chalcogen atoms bonded to carbon vertices. Specifically, a computational investigation has been carried out on the co-crystal of (1,2-C2B10H10)2Se4•toluene and a single crystal of (1,2-C2B10H10)2Te4.
Zobrazit více v PubMed
Melichar P., Hnyk D., Fanfrlík J. Systematic Examination of Classical and Multi-Center Bonding in Heteroborane Clusters. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. PubMed DOI
Hnyk D., Wann D.A. Hnyk D., McKee M. Challenges and Advances in Computational Chemistry and Physics, (Boron: The Fifth Element) Volume 20. Springer; Dordrecht, The Netherlands: 2016. Molecular Structures of Free Boron Clusters; pp. 17–48.
Grimmes R. Supercarboranes. Angew. Chem. Int. Ed. 2003;42:1198–1200. doi: 10.1002/anie.200390317. PubMed DOI
Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI
Schleyer P.v.R., Najafian K. Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn-2Hn. Inorg. Chem. 1998;37:3454–3470. doi: 10.1021/ic980110v. PubMed DOI
Baše T., Holub J., Fanfrlík J., Hnyk D., Lane P.D., Wann D.A., Vishnevskiy Y.V., Tikhonov D., Reuter C.G., Mitzel N.W. Icosahedral Carbaboranes with Peripheral Hydrogen-Chalcogenide Groups: Structures from Gas Electron Diffraction and Chemical Shielding in Solution. Chem. Eur. J. 2019;25:2313–2321. doi: 10.1002/chem.201805145. PubMed DOI
Wrackmeyer B., García Hernández Z., Kempe R., Herbehold M. Novel 1,2-Dicarba-closo-dodecaborane(12) Derivatives of Selenium. Eur. J. Inorg. Chem. 2007:239–246. doi: 10.1002/ejic.200600701. DOI
Arai K., Takei T., Okumura M., Watanabe S., Amagai Y., Asahina Y., Moroder L., Hojo H., Inaba K., Iwaoka M. Preparation of Selenoinsulin as a Long-Lasting Insulin Analogue. Angew. Chem. Int. Ed. Engl. 2017;56:5522–5526. doi: 10.1002/anie.201701654. PubMed DOI
Herbehold M., Milius W., Guo-Xin J., Kremnitz W., Wrackmeyer B. Molecular Structures of Some Tellurium Derivatives of 1,2-Dicarba-closo-dodecaborane(12) Z. Anorg. Allg. Chem. 2006;632:2031–2036. doi: 10.1002/zaac.200600100. DOI
Teixidor F., Rudolph R.W. Synthesis of Cyclic and Polymeric Derivatives of 1,2-Dithiol-o-carborane. J. Organomet. Chem. 1983;241:301–312. doi: 10.1016/S0022-328X(00)98524-3. DOI
Gleiter R., Haberhauer G., Werz D.B., Roming F., Bleiholder C. From noncovalent Chalcogen-chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations. Chem. Rev. 2018;118:2010–2014. doi: 10.1021/acs.chemrev.7b00449. PubMed DOI
Werz D.B., Gleiter R., Roming F. Nanotube Formation Favored by Chalcogen-Chalcogen Interactions. J. Am. Chem. Soc. 2002;124:10638–10639. doi: 10.1021/ja027146d. PubMed DOI
Werz D.B., Staeb T.H., Benisch C., Rausch B.J., Rominger F., Gleiter R. Self-Organization of Chalcogen-Containing Cyclic Alkynes and Alkenes to Yield Columnar Structures. Org. Lett. 2002;4:339–342. doi: 10.1021/ol016953z. PubMed DOI
Macháček J., Plešek J., Holub J., Hnyk D., Všetečka V., Císařová I., Kaupp M., Štíbr B. New Route to 1-Thia-closo-dodecaborane(11), closo-1-SB11H11, and its Halogenation Reactions. The Effect of the Halogen on the Dipole Moments and the NMR Spectra and the Importance of Spin−Orbit Coupling for the 11B Chemical Shifts. Dalton Trans. 2006:1024–1029. doi: 10.1039/B512345C. PubMed DOI
Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem. Int. Ed. 2014;53:10139–10142. doi: 10.1002/anie.201405901. PubMed DOI
Fanfrlík J., Hnyk D. Dihalogen and Pnictogen Bonding in Crystalline Icosahedral Phosphaboranes. Crystals. 2018;8:390–399. doi: 10.3390/cryst8100390. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision, D.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.
Flűkiger P., Lűthi H.P., Portmann S., Weber J. MOLEKEL 4.3. Swiss Center for Scientific Computing; Manno, Switzerland: 2000.
Portmann S., Luthi H.P. MOLEKEL: An Interactive Molecular Graphic Tool. CHIMIA Int. J. Chem. 2000;54:766–770.
Hostaš J., Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI
Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI
Jeziorski B., Moszynski R., Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994;94:1887–1930. doi: 10.1021/cr00031a008. DOI
Parker T.M., Burns L.A., Parrish R.M., Ryno A.G., Sherrill C.D. Levels of Symmetry Adapted Perturbation Theory (SAPT). I. Efficiency and Performance for Interaction Energies. J. Chem. Phys. 2014;140:094106. doi: 10.1063/1.4867135. PubMed DOI
Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W. Revealing Noncovalen Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Contreras-García J., Yang W., Johnson E.R. Analysis of Hydrogen-Bond Interaction Potentials from Electron Density: Integration of Noncovalent Interaction Region. J. Phys. Chem. A. 2011;115:12983–12990. doi: 10.1021/jp204278k. PubMed DOI PMC
Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Turney J.M., Simmonett A.C., Parrish R.M., Hohenstein E.G., Evangelista F., Fermann J.T., Mintz B.J., Burns L.A., Wilke J.J., Abrams M.L., et al. Psi4: An Open-Source Ab Initio Electronic Structure Program. WIREs Comput. Mol. Sci. 2012;2:556–565. doi: 10.1002/wcms.93. DOI
Stewart J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI
Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI
Clark T., Hennemann M., Murray J.S., Politzer P. Halogen Bonding: The σ-Hole. J. Mol. Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2. PubMed DOI
Fanfrlík J., Hnyk D. Chalcogens Act as Inner and Outer Heteroatoms in Borane Cages with Possible Consequences for σ-Hole Interactions. CrystEngComm. 2016;47:8973–9162. doi: 10.1039/C6CE01861K. DOI
Fanfrlík J., Holub J., Růžičková Z., Řezáč J., Lane P.D., Wann D.A., Hnyk D., Růžička A., Hobza P. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem. 2016;17:3373–3376. doi: 10.1002/cphc.201600848. PubMed DOI
Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC
Bhandary S., Sirohiwal A., Kadu R., Kumar S., Chopra D. Dipsresion Stabilized Se/Te···π Double Chalcogen Bonding Synthons in in Situ Cryocrystallized Divalent Organochalcogen Liquids. Cryst. Growth Des. 2018;18:3734–3739. doi: 10.1021/acs.cgd.8b00585. DOI
Tsuzuki S., Sato N. Origin of Attraction in Chalcogen-nitrogen Interaction if 1,2,5-Chalcogenadiazole Dimers. J. Phys. Chem. A. 2013;117:6849–6855. doi: 10.1021/jp403200j. PubMed DOI
Řezáč J., De la Lande A. On the Role of Charge Transfer in Halogen Bonding. Phys. Chem. Chem. Phys. 2017;19:791–803. doi: 10.1039/C6CP07475H. PubMed DOI
Fanfrlík J., Pecina A., Řezáč J., Sedlak R., Hnyk D., Lepšík M., Hobza P. B-H···π: A Nonclassical Hydrogen Bond or Dispersion Contact? Phys. Chem. Chem. Phys. 2017;19:18194–18200. doi: 10.1039/C7CP02762A. PubMed DOI
Esterhuysen C., Heßelman A., Clark T. Trifluoromethyl: An Amphiphilic Noncovalent Bonding Partner. ChemPhysChem. 2017;18:772–784. doi: 10.1002/cphc.201700027. PubMed DOI