Chalcogen Bonding due to the Exo-Substitution of Icosahedral Dicarbaborane

. 2019 Jul 23 ; 24 (14) : . [epub] 20190723

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31340435

Grantová podpora
17-08045S Grantová Agentura České Republiky

Chalcogen atoms are a class of substituents capable of generating inner and outer derivatives of boron clusters. It is well known that chalcogenated boron clusters can form strong σ-hole interactions when a chalcogen atom is a part of an icosahedron. This paper studies σ-hole interactions of dicarbaboranes with two exopolyhedral chalcogen atoms bonded to carbon vertices. Specifically, a computational investigation has been carried out on the co-crystal of (1,2-C2B10H10)2Se4•toluene and a single crystal of (1,2-C2B10H10)2Te4.

Zobrazit více v PubMed

Melichar P., Hnyk D., Fanfrlík J. Systematic Examination of Classical and Multi-Center Bonding in Heteroborane Clusters. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. PubMed DOI

Hnyk D., Wann D.A. Hnyk D., McKee M. Challenges and Advances in Computational Chemistry and Physics, (Boron: The Fifth Element) Volume 20. Springer; Dordrecht, The Netherlands: 2016. Molecular Structures of Free Boron Clusters; pp. 17–48.

Grimmes R. Supercarboranes. Angew. Chem. Int. Ed. 2003;42:1198–1200. doi: 10.1002/anie.200390317. PubMed DOI

Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI

Schleyer P.v.R., Najafian K. Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn-2Hn. Inorg. Chem. 1998;37:3454–3470. doi: 10.1021/ic980110v. PubMed DOI

Baše T., Holub J., Fanfrlík J., Hnyk D., Lane P.D., Wann D.A., Vishnevskiy Y.V., Tikhonov D., Reuter C.G., Mitzel N.W. Icosahedral Carbaboranes with Peripheral Hydrogen-Chalcogenide Groups: Structures from Gas Electron Diffraction and Chemical Shielding in Solution. Chem. Eur. J. 2019;25:2313–2321. doi: 10.1002/chem.201805145. PubMed DOI

Wrackmeyer B., García Hernández Z., Kempe R., Herbehold M. Novel 1,2-Dicarba-closo-dodecaborane(12) Derivatives of Selenium. Eur. J. Inorg. Chem. 2007:239–246. doi: 10.1002/ejic.200600701. DOI

Arai K., Takei T., Okumura M., Watanabe S., Amagai Y., Asahina Y., Moroder L., Hojo H., Inaba K., Iwaoka M. Preparation of Selenoinsulin as a Long-Lasting Insulin Analogue. Angew. Chem. Int. Ed. Engl. 2017;56:5522–5526. doi: 10.1002/anie.201701654. PubMed DOI

Herbehold M., Milius W., Guo-Xin J., Kremnitz W., Wrackmeyer B. Molecular Structures of Some Tellurium Derivatives of 1,2-Dicarba-closo-dodecaborane(12) Z. Anorg. Allg. Chem. 2006;632:2031–2036. doi: 10.1002/zaac.200600100. DOI

Teixidor F., Rudolph R.W. Synthesis of Cyclic and Polymeric Derivatives of 1,2-Dithiol-o-carborane. J. Organomet. Chem. 1983;241:301–312. doi: 10.1016/S0022-328X(00)98524-3. DOI

Gleiter R., Haberhauer G., Werz D.B., Roming F., Bleiholder C. From noncovalent Chalcogen-chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations. Chem. Rev. 2018;118:2010–2014. doi: 10.1021/acs.chemrev.7b00449. PubMed DOI

Werz D.B., Gleiter R., Roming F. Nanotube Formation Favored by Chalcogen-Chalcogen Interactions. J. Am. Chem. Soc. 2002;124:10638–10639. doi: 10.1021/ja027146d. PubMed DOI

Werz D.B., Staeb T.H., Benisch C., Rausch B.J., Rominger F., Gleiter R. Self-Organization of Chalcogen-Containing Cyclic Alkynes and Alkenes to Yield Columnar Structures. Org. Lett. 2002;4:339–342. doi: 10.1021/ol016953z. PubMed DOI

Macháček J., Plešek J., Holub J., Hnyk D., Všetečka V., Císařová I., Kaupp M., Štíbr B. New Route to 1-Thia-closo-dodecaborane(11), closo-1-SB11H11, and its Halogenation Reactions. The Effect of the Halogen on the Dipole Moments and the NMR Spectra and the Importance of Spin−Orbit Coupling for the 11B Chemical Shifts. Dalton Trans. 2006:1024–1029. doi: 10.1039/B512345C. PubMed DOI

Fanfrlík J., Přáda A., Padělková Z., Pecina A., Macháček J., Lepšík M., Holub J., Růžička A., Hnyk D., Hobza P. The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics. Angew. Chem. Int. Ed. 2014;53:10139–10142. doi: 10.1002/anie.201405901. PubMed DOI

Fanfrlík J., Hnyk D. Dihalogen and Pnictogen Bonding in Crystalline Icosahedral Phosphaboranes. Crystals. 2018;8:390–399. doi: 10.3390/cryst8100390. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision, D.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Flűkiger P., Lűthi H.P., Portmann S., Weber J. MOLEKEL 4.3. Swiss Center for Scientific Computing; Manno, Switzerland: 2000.

Portmann S., Luthi H.P. MOLEKEL: An Interactive Molecular Graphic Tool. CHIMIA Int. J. Chem. 2000;54:766–770.

Hostaš J., Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI

Řezáč J., Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Jeziorski B., Moszynski R., Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994;94:1887–1930. doi: 10.1021/cr00031a008. DOI

Parker T.M., Burns L.A., Parrish R.M., Ryno A.G., Sherrill C.D. Levels of Symmetry Adapted Perturbation Theory (SAPT). I. Efficiency and Performance for Interaction Energies. J. Chem. Phys. 2014;140:094106. doi: 10.1063/1.4867135. PubMed DOI

Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W. Revealing Noncovalen Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Contreras-García J., Yang W., Johnson E.R. Analysis of Hydrogen-Bond Interaction Potentials from Electron Density: Integration of Noncovalent Interaction Region. J. Phys. Chem. A. 2011;115:12983–12990. doi: 10.1021/jp204278k. PubMed DOI PMC

Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI

Turney J.M., Simmonett A.C., Parrish R.M., Hohenstein E.G., Evangelista F., Fermann J.T., Mintz B.J., Burns L.A., Wilke J.J., Abrams M.L., et al. Psi4: An Open-Source Ab Initio Electronic Structure Program. WIREs Comput. Mol. Sci. 2012;2:556–565. doi: 10.1002/wcms.93. DOI

Stewart J.P. Optimization of parameters for semiempirical methods IV: Extension of MNDO, AM1, and PM3 to more main group elements. J. Mol. Model. 2004;10:155–164. doi: 10.1007/s00894-004-0183-z. PubMed DOI

Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016;37:1230–1237. doi: 10.1002/jcc.24312. PubMed DOI

Clark T., Hennemann M., Murray J.S., Politzer P. Halogen Bonding: The σ-Hole. J. Mol. Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2. PubMed DOI

Fanfrlík J., Hnyk D. Chalcogens Act as Inner and Outer Heteroatoms in Borane Cages with Possible Consequences for σ-Hole Interactions. CrystEngComm. 2016;47:8973–9162. doi: 10.1039/C6CE01861K. DOI

Fanfrlík J., Holub J., Růžičková Z., Řezáč J., Lane P.D., Wann D.A., Hnyk D., Růžička A., Hobza P. Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes. ChemPhysChem. 2016;17:3373–3376. doi: 10.1002/cphc.201600848. PubMed DOI

Mantina M., Chamberlin A.C., Valero R., Cramer C.J., Truhlar D.G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. doi: 10.1021/jp8111556. PubMed DOI PMC

Bhandary S., Sirohiwal A., Kadu R., Kumar S., Chopra D. Dipsresion Stabilized Se/Te···π Double Chalcogen Bonding Synthons in in Situ Cryocrystallized Divalent Organochalcogen Liquids. Cryst. Growth Des. 2018;18:3734–3739. doi: 10.1021/acs.cgd.8b00585. DOI

Tsuzuki S., Sato N. Origin of Attraction in Chalcogen-nitrogen Interaction if 1,2,5-Chalcogenadiazole Dimers. J. Phys. Chem. A. 2013;117:6849–6855. doi: 10.1021/jp403200j. PubMed DOI

Řezáč J., De la Lande A. On the Role of Charge Transfer in Halogen Bonding. Phys. Chem. Chem. Phys. 2017;19:791–803. doi: 10.1039/C6CP07475H. PubMed DOI

Fanfrlík J., Pecina A., Řezáč J., Sedlak R., Hnyk D., Lepšík M., Hobza P. B-H···π: A Nonclassical Hydrogen Bond or Dispersion Contact? Phys. Chem. Chem. Phys. 2017;19:18194–18200. doi: 10.1039/C7CP02762A. PubMed DOI

Esterhuysen C., Heßelman A., Clark T. Trifluoromethyl: An Amphiphilic Noncovalent Bonding Partner. ChemPhysChem. 2017;18:772–784. doi: 10.1002/cphc.201700027. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...