Multiphase progenetic development shaped the brain of flying archosaurs

. 2019 Jul 25 ; 9 (1) : 10807. [epub] 20190725

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31346192
Odkazy

PubMed 31346192
PubMed Central PMC6658547
DOI 10.1038/s41598-019-46959-2
PII: 10.1038/s41598-019-46959-2
Knihovny.cz E-zdroje

The growing availability of virtual cranial endocasts of extinct and extant vertebrates has fueled the quest for endocranial characters that discriminate between phylogenetic groups and resolve their neural significances. We used geometric morphometrics to compare a phylogenetically and ecologically comprehensive data set of archosaurian endocasts along the deep evolutionary history of modern birds and found that this lineage experienced progressive elevation of encephalisation through several chapters of increased endocranial doming that we demonstrate to result from progenetic developments. Elevated encephalisation associated with progressive size reduction within Maniraptoriformes was secondarily exapted for flight by stem avialans. Within Mesozoic Avialae, endocranial doming increased in at least some Ornithurae, yet remained relatively modest in early Neornithes. During the Paleogene, volant non-neoavian birds retained ancestral levels of endocast doming where a broad neoavian niche diversification experienced heterochronic brain shape radiation, as did non-volant Palaeognathae. We infer comparable developments underlying the establishment of pterosaurian brain shapes.

Zobrazit více v PubMed

Balanoff AM, Bever GS, Rowe TB, Norell MA. Evolutionary origins of the avian brain. Nature. 2013;501:93–96. doi: 10.1038/nature12424. PubMed DOI

Kawabe S, Shimokawa T, Miki H, Matsuda S, Endo H. Variation in avian brain shape: relationship with size and orbital shape. J. Anat. 2013;223:495–508. PubMed PMC

Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl. Acad. Sci. 2005;102:5460–6465. doi: 10.1073/pnas.0408145102. PubMed DOI PMC

Sol D, Székely T, Liker A, Lefebvre L. Big-brained birds survive better in nature. Proc. R. Soc. Lond. B. 2007;274:763–769. doi: 10.1098/rspb.2006.3765. PubMed DOI PMC

Sol D, et al. Evolutionary divergence in brain size between migratory and resident birds. PLOS ONE. 2010;5(3):e0009617. doi: 10.1371/journal.pone.0009617. PubMed DOI PMC

Alonso PD, Milner AC, Ketcham RA, Cookson MJ, Rowe TB. The avian nature of the brain and inner ear of Archaeopteryx. Nature. 2004;430:666–669. doi: 10.1038/nature02706. PubMed DOI

Bhullar BAS, et al. Birds have paedomorphoc dinosaurs skulls. Nature. 2012;427:223–226. doi: 10.1038/nature11146. PubMed DOI

Bhullar BAS, et al. How to make a bird skull: Major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 2016;56(3):389–403. doi: 10.1093/icb/icw069. PubMed DOI

Fabbri M, et al. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat. Ecol. Evol. 2017;1:1543–1550. doi: 10.1038/s41559-017-0288-2. PubMed DOI

Lee MS, Cau A, Naish D, Dyke GJ. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science. 2014;345:562–566. doi: 10.1126/science.1252243. PubMed DOI

Wellnhofer, P. Archaeopteryx. Der Urvogel von Solnhofen (Dr Friedrich Pfeil, 2008).

Witmer LM. An icon knocked from its perch. Nature. 2011;475:458–459. doi: 10.1038/475458a. PubMed DOI

Marsh OC. Odontornithes: a monograph on the extinct tooth birds of North America. Mem. Peabody Mus. Nat. Hist. 1880;1:1–201.

Walsh SA, Milner AC, Bourdon E. A reappraisal of Cerebavis cenomanica (Aves, ornithurae), from Melovatka, Russia. J. Anat. 2016;229(2):215–227. doi: 10.1111/joa.12406. PubMed DOI PMC

Walsh, S.A. & Knoll, F. The evolution of avian intelligence and sensory capabilities: The fossil evidence. Digital endocasts. Replacement of Neanderthals by modern humans series (eds Bruner, E., Ogihara, N. & Tanabe, H.) 59–69 (Springer, Tokyo,2018).

Balanoff AM, Smaers JB, Turner AH. Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation. J. Anat. 2016;229(2):204–214. doi: 10.1111/joa.12403. PubMed DOI PMC

Bruner, E., Ogihara, N. & Tanabe, H. (eds) Digital endocasts. Replacement of Neanderthals by modern humans series. (Springer, Tokyo, 2018).

Tafforeau P, et al. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A. 2006;83:195–202. doi: 10.1007/s00339-006-3507-2. DOI

Sanchez S. Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc. Microanal. 2012;18(5):1095–1105. doi: 10.1017/S1431927612001079. PubMed DOI

Fernandez V, et al. Phase contrast synchrotron microtomography: improving noninvasive investigations of fossil embryos in ovo. Microsc. Microanal. 2012;18(1):179–185. doi: 10.1017/S1431927611012426. PubMed DOI

Fernandez Vincent, Abdala Fernando, Carlson Kristian J., Cook Della Collins, Rubidge Bruce S., Yates Adam, Tafforeau Paul. Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow. PLoS ONE. 2013;8(6):e64978. doi: 10.1371/journal.pone.0064978. PubMed DOI PMC

Maldanis, L. et al. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates. Elife5, 10.7554/eLife.14698.011 (2016). PubMed PMC

Voeten DFAE, Reich T, Araújo R, Schever TM. Synchrotron microtomography of a Nothosaurus marchicus skull informs on nothosaurian physiology and adaptations in early Sauropterygia. PLOS ONE. 2018;13(1):e0188509. doi: 10.1371/journal.pone.0188509. PubMed DOI PMC

Pradel A, et al. Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl. Acad. Sci. 2009;106(13):5224–5228. doi: 10.1073/pnas.0807047106. PubMed DOI PMC

Brasier MD, et al. Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur. Geol. Soc. London, Spec. Publ. 2016;448:383–398. doi: 10.1144/SP448.3. DOI

Rogers SW. Exploring dinosaur neuropaleobiology computed tomography scanning and analysis of an Allosaurus fragilis endocast. Neuron. 1998;21(4):673–679. doi: 10.1016/S0896-6273(00)80585-1. PubMed DOI

Hurlburt, G. R., Ridgely, R. C. & Witmer, L. M. Relative size of brain and cerebrum in tyrannosaurid dinosaurs: an analysis using brain-endocast quantitative relationships in extant alligators. Tyrannosaurid paleobiology, 1–21 (2013).

Witmer, L. M. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils in Functional morphology in vertebrate paleontology (ed. Thompson, J. J.) 19–33 (Cambridge University Press, 1995).

Cau A, et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature. 2017;552:395–399. doi: 10.1038/nature24679. PubMed DOI

Voeten DFAE, et al. Wing bones geometry reveals active flight in Archaeopteryx. Nat. Comm. 2018;9:923. doi: 10.1038/s41467-018-03296-8. PubMed DOI PMC

Marugán-Lobón, J., Chiappe, L. M. & Farke, A. A. The variability of inner ear orientation in saurischian dinosaurs: testing the use of semicircular canals as a reference system for comparative anatomy. PeerJ1, e124 (2013). PubMed PMC

Jerison, H. J. Evolution of the brain and intelligence. 465pp. (New York: Academic Press, 1973).

Zelenitsky DK, Therrien F, Ridgely RC, McGee AR, Witmer LM. Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. R. Soc. Lond. 2011;278:3625–3634. doi: 10.1098/rspb.2011.0238. PubMed DOI PMC

Li, Z. Evolution of the hyoid apparatus in Archosauria: implications for the origin of avian tongue function (University of Texas, 2015).

Jirák D, Janáček J. Volume of the crocodilian brain and endocast during ontogeny. PlosOne. 2017;12:e0178491. doi: 10.1371/journal.pone.0178491. PubMed DOI PMC

Witmer LM, Ridgely RC. New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda) with implications for sensory organization and behaviour. Anat. Rec. 2009;292(9):1266–1296. doi: 10.1002/ar.20983. PubMed DOI

Northcutt RG. variation in reptilian brain and cognition. Brain Behav. Evol. 2013;82(1):45–54. doi: 10.1159/000351996. PubMed DOI

Walsh, S. A. & Milner, A. C. Evolution of the avian brain and senses in Living Dinosaurs: The evolutionary history of modern birds (eds Dyke, G. & Kaiser, G.) 282–305 (John Wiley and Sons, 2011).

Walsh SA, Milner AC. Halcyornis toliapicus (Aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes. J. Syst. Palaeontol. 2011;9:173–181. doi: 10.1080/14772019.2010.513703. DOI

Iwaniuk AN, Wylie DRW. The evolution of stereopsis and the wulst in caprimulgiform birds: a comparative analysis. J. Comp. Physiol. 2006;192:1313–1326. doi: 10.1007/s00359-006-0161-2. PubMed DOI

Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED. Night-vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. 2005;102(23):8339–8344. doi: 10.1073/pnas.0409575102. PubMed DOI PMC

Reiner A, Yamamoto K, Karten HJ. Organization and evolution of the avian forebrain. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005;278A:1080–1102. doi: 10.1002/ar.a.20253. PubMed DOI

Balanoff AM, Bever GS, Norell MA. Reconsidering the avian nature of the oviraptosaurian brain (Dinosauria: Theropoda) PLOS ONE. 2014;9(12):e113559. doi: 10.1371/journal.pone.0128458. PubMed DOI PMC

Jerison HJ. Brain evolution and dinosaur brains. Am. Nat. 1969;103(934):575–588. doi: 10.1086/282627. DOI

Lefebvre L, Sol D. Brains, lifestyles and cognition: are there general trends? Brain Behav. Evol. 2008;72(2):135–144. doi: 10.1159/000151473. PubMed DOI

Gould, S. J. Ontogeny and phylogeny. 501pp (Belknap, Cambridge, 1977).

McNamara, K. J. & Long, J. A. The role of heterochrony in dinosaur evolution in The complete dinosaur. Life of the Past (eds Brett-Surman, M. K., Holtz, T. R. J. & Farlow, J. O.). 76pp (Indiana University Press, 2012).

Lautenschlager S, Hübner T. Ontogenetic trajectories in the ornithischian endocranium. J. Evol. Biol. 2013;26:2044–2050. doi: 10.1111/jeb.12181. PubMed DOI

Cott HB. Parental care in the Crocodilia, with special reference to Crocodylus niloticus. IUCN Publication New Series, Supplementary Papers. 1971;32:166–180.

Pooley AC. Nest opening response of the Nile Crocodile Crocodylus niloticus. J. Zool. 1977;182(1):17–26. doi: 10.1111/j.1469-7998.1977.tb04137.x. DOI

Brazaitis P, Watanabe ME. Crocodilian behaviour: a window to dinosaur behaviour? Hist. Biol. 2011;23(1):73–90. doi: 10.1080/08912963.2011.560723. DOI

Gill, F. B. Ornithology. Third Edition. 758pp (MacMillan, 2008).

Hutton JM. Incubation temperature, sex ratios and sex determination in a population of Nile crocodiles (Crocodylus niloticus) J. Zool. 1987;211(1):143–155. doi: 10.1111/j.1469-7998.1987.tb07458.x. DOI

Tamimie HS, Fox MW. Effect of continuous and intermittent light exposure on the embryonic development of chicken eggs. Comp. Biochem. Physiol. 1967;20:793–799. doi: 10.1016/0010-406X(67)90053-9. DOI

Burnham, D. A. Paleoenvironment, paleoecology, and evolution of maniraptoran “dinosaurs”. 195 Pp (University of New Orleans, 2007).

Zelenitsky DK, Therrien F, Kobayashi Y. Olfactory acuity in theropods: paleobiological and evolutionary implications. Proc. R. Soc. Lond. B. 2009;276(1657):667–673. doi: 10.1098/rspb.2008.1075. PubMed DOI PMC

Kurochkin EN, Saveliev SV, Postnov AA, Pervushov EM, Popov EV. On the brain of a primitive bird from the Upper cretaceous of European Russia. Paleontol. J. 2006;40(6):655–667. doi: 10.1134/S0031030106060086. DOI

Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526(7574):569–573. doi: 10.1038/nature15697. PubMed DOI

Agnolin FL, Egli FB, Chatterjee S, Marsà JAG, Novas FE. Vegaviidae, a new clade of southern diving birds that survived the K/T boundary. Sci. Nat. 2017;104(87):1–9. PubMed

Clarke JA, Tambussi CP, Noriega JI, Erickson GM, Ketcham RA. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature. 2005;433(7023):305–308. doi: 10.1038/nature03150. PubMed DOI

Field DJ, et al. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Curr. Biol. 2018;28(1):1825–1831. doi: 10.1016/j.cub.2018.04.062. PubMed DOI

Khanna, D.R. Biology of birds. 352 pp. (Discovery Publishing House, 2005).

Dyke G, Wang X, Kaiser G. Large fossil birds from a Late Cretaceous marine turbidite sequence on Hornby Island (British Columbia) Can. J. Earth Sci. 2011;48(11):1489–1496. doi: 10.1139/e11-050. DOI

Stidham TA, Lofgren D, Farke AA, Paik M, Choi R. A lithornithid (Aves: Palaeognathae) from the Paleocene (Tiffanian) of southern California. PaleoBios. 2014;31(1):1–7.

Yonezawa T, et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 2017;27(1):68–77. doi: 10.1016/j.cub.2016.10.029. PubMed DOI

Dial KP, Ross JR, Dial TR. What use is half a wing in the ecology and evolution of birds? AIBS Bulletin. 2006;56(5):437–445.

Brusatte SL, O’Connor JK, Jarvis ED. The origin and diversification of birds. Curr. Biol. 2015;25(19):888–898. doi: 10.1016/j.cub.2015.08.003. PubMed DOI

Chiappe LM. The first 85 million years of avian evolution. Nature. 1995;378(6555):349–355. doi: 10.1038/378349a0. DOI

Madespacher F. Evolution: flight of the ratites. Curr. Biol. 2017;27(3):110–113. doi: 10.1016/j.cub.2016.12.023. PubMed DOI

Van Tuinen M. Advanced birds (Neoaves) The timetree of life. 2009;419:419–422.

Chiappe, L. M. & Walker, C. A. Skeletal morphology and systematics of the Cretaceous Enantiornithes (Ornithothoraces: Enantiornithes). In Mesozoic Birds: Above the heads of dinosaurs (eds Chiappe, L. M. & Witmer, L. M.) pp. 240–267 (University of California Press, 2002).

Liu D, et al. Flight aerodynamics in enantiornithine: informations from a new Chinese Early Cretaceous bird. PLOS ONE. 2017;12(10):e0184637. doi: 10.1371/journal.pone.0184637. PubMed DOI PMC

Serrano FJ, et al. Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds. Palaeontology. 2018;61(3):359–368. doi: 10.1111/pala.12351. DOI

Hope, S. The Mesozoic radiation of Neornithes in Mesozoic Birds: Above the head of the dinosaurs (eds Chiappe, L. M. & Witmer, L. M.) pp. 339–388 (University of California Press, 2002).

Gutiérrez-Ibáñez C, Iwaniuk AN, Wylie DR. The independent evolution of the enlargement of the principal sensory nucleus of the trigeminal nerve in three different groups of birds. Brain Behav. Evol. 2009;74:280–294. doi: 10.1159/000270904. PubMed DOI

Cunningham SJ, et al. The anatomy of the bill tip of kiwi and associated somatosensory region of the brain: comparisons with shorebirds. PLOS ONE. 2013;8(11):e80036. doi: 10.1371/journal.pone.0080036. PubMed DOI PMC

Bond AB, Kamil A, Balda RP. Serial reversal learning and the evolution of behavioural flexibility in the three species of north American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica) J. Comp. Physiol. 2007;121(4):372–379. PubMed

Corfield JR, Wild JM, Parsons S, Kubke MF. Morphometric analysis of telencephalic structure in a variety of neognath and paleognath bird species reveals regional differences associated with specific behavioural traits. Brain Behav. Evol. 2012;80:181–195. doi: 10.1159/000339828. PubMed DOI

Wylie DR, Gutiérrez-Ibáñez C, Iwaniuk AN. Integrating brain, behaviour and phylogeny to understand the evolution of sensory systems in birds. Front. Neurosci. 2015;9(281):00281. doi: 10.3389/fnins.2015.00281. PubMed DOI PMC

Fuchs R, Winkler H, Bingman VP, Ross JD, Bernroider G. Brain geometry and its relation to migratory behaviour in birds. J. Neurosci. Res. 2014;1(1):1–9.

Garamszegi LZ, Møller AP, Erritzøe J. Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc. R. Soc. Lond. 2002;269:961–967. doi: 10.1098/rspb.2002.1967. PubMed DOI PMC

Chatterjee, S. & Templin, R. J. Palaeoecology, aerodynamics, and the origin of avian flight in Earth and life. International year of planet Earth (ed. Talent, J. A.) pp. 585–612 (Springer, 2012).

Iwaniuk AN, Hurd PL. The evolution of cerebrotypes in birds. Brain, Behav. Evol. 2005;65(4):215–230. doi: 10.1159/000084313. PubMed DOI

Iwaniuk AN, Heesy CP, Hall MI, Wylie DRW. Relative wulst volume correlated with orbit orientation and binocular visual field in birds. J. Comp. Physiol. 2008;194:267–282. doi: 10.1007/s00359-007-0304-0. PubMed DOI

Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002;206(1):33–40. doi: 10.1046/j.1365-2818.2002.01010.x. PubMed DOI

Sanchez S, Ahlberg PE, Tirjnastic KM, Mirone A, Tafforeau P. Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructure. Microsc. Microanal. 2012;18:1095–1105. doi: 10.1017/S1431927612001079. PubMed DOI

Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. 206 pp. (Bulletin of the American Museum of Natural History, 2012).

Agnolín, F. L. & Novas, F. E. Avian ancestors : A review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. 100pp. (Springer, 2013).

Maryańska, T., Osmolská, H. & Wolsan, M. Avialan status for Oviraptosauria. Acta Palaeontol. Pol.47(1), 97–116 (2002).

Paul, G. S. The Princeton Guide to Dinosaurs. 360pp. (Princeton University Press, 2010).

Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011;11:353–357. doi: 10.1111/j.1755-0998.2010.02924.x. PubMed DOI

Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):9.

Smith FJ, et al. Divergence of craniofacial developmental trajectories among avian embryos. Dev. Dyn. 2015;244(9):1158–1167. doi: 10.1002/dvdy.24262. PubMed DOI PMC

Gauthier J. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 1986;8:1–55.

Padian, K. & Chiappe, L. M. “Bird Origins” in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 41–96 (San Diego: Academic Press, 1997).

Balanoff, A. M., Xing, X., Kobayashi, Y., Matsufune, Y. & Norell M. A. Cranial osteology of the Theropod dinosaur Incisivosaurus gauthieri (Theropoda: Oviraptosauria). Am. Mus. Novit. 3651 (2009).

Witmer LM, Chatterjee S, Franzosa J, Rowe T. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature. 2004;425(6961):950. doi: 10.1038/nature02048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...