Wing bone geometry reveals active flight in Archaeopteryx
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
29535376
PubMed Central
PMC5849612
DOI
10.1038/s41467-018-03296-8
PII: 10.1038/s41467-018-03296-8
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- dinosauři anatomie a histologie MeSH
- kosti a kostní tkáň anatomie a histologie diagnostické zobrazování MeSH
- křídla zvířecí anatomie a histologie MeSH
- let zvířat * MeSH
- ptáci * MeSH
- rentgenová mikrotomografie MeSH
- zkameněliny anatomie a histologie diagnostické zobrazování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Archaeopteryx is an iconic fossil taxon with feathered wings from the Late Jurassic of Germany that occupies a crucial position for understanding the early evolution of avian flight. After over 150 years of study, its mosaic anatomy unifying characters of both non-flying dinosaurs and flying birds has remained challenging to interpret in a locomotory context. Here, we compare new data from three Archaeopteryx specimens obtained through phase-contrast synchrotron microtomography to a representative sample of archosaurs employing a diverse array of locomotory strategies. Our analyses reveal that the architecture of Archaeopteryx's wing bones consistently exhibits a combination of cross-sectional geometric properties uniquely shared with volant birds, particularly those occasionally utilising short-distance flapping. We therefore interpret that Archaeopteryx actively employed wing flapping to take to the air through a more anterodorsally posteroventrally oriented flight stroke than used by modern birds. This unexpected outcome implies that avian powered flight must have originated before the latest Jurassic.
Bürgermeister Müller Museum Bahnhofstrasse 8 91807 Solnhofen Germany
European Synchrotron Radiation Facility 71 Avenue des Martyrs CS 40220 38043 Grenoble Cedex France
Zobrazit více v PubMed
Ksepka DT. Evolution–a rapid flight towards birds. Curr. Biol. 2014;24:1052–1055. doi: 10.1016/j.cub.2014.09.018. PubMed DOI
Wellnhofer, P.
Chiappe, L. M., Qingjin, L. M.
Burgers P, Chiappe LM. The wing of Archaeopteryx as a primary thrust generator. Nature. 1999;399:60–62. doi: 10.1038/19967. DOI
Mayr, G.
Currey JD, Alexander R. The thickness of the walls of tubular bones. J. Zool. 1985;206:453–468. doi: 10.1111/j.1469-7998.1985.tb03551.x. DOI
Frost HM. From Wolff’s law to the Utah paradigm: Insights about bone physiology and its clinical applications. Anat. Rec. 2001;262:398–419. doi: 10.1002/ar.1049. PubMed DOI
Cubo J, Casinos A. Biomechanical significance of cross-sectional geometry of avian long bones. Eur. J. Morphol. 1998;36:19–28. doi: 10.1076/ejom.36.1.0019. PubMed DOI
Pennycuick, C. J.
De Margerie, E., Sanchez, S., Cubo, J. & Castanet, J. Torsional resistance as a principal component of the structural design of long bones: Comparative multivariate evidence in birds. PubMed
Tafforeau P, et al. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl. Phys. A. 2006;83:195–202. doi: 10.1007/s00339-006-3507-2. DOI
Simons ELR, Hieronymus TL, O’Connor PM. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds. J. Morphol. 2011;272:958–971. doi: 10.1002/jmor.10963. PubMed DOI
Erickson GM, et al. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE. 2009;4:e7390. doi: 10.1371/journal.pone.0007390. PubMed DOI PMC
Cubo J, Le Roy N, Martinez-Maza C, Montes L. Paleohistological estimation of bone growth rate in extinct archosaurs. Paleobiology. 2012;38:335–349. doi: 10.1666/08093.1. DOI
Montes L, et al. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: a phylogenetic approach. Biol. J. Linn. Soc. 2007;92:63–76. doi: 10.1111/j.1095-8312.2007.00881.x. DOI
Chinsamy-Turan, A.
Smith NA, Clarke JA. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. Anat. Rec. 2014;297:188–199. doi: 10.1002/ar.22841. PubMed DOI
Ebel K. On the origin of flight in Archaeopteryx and in pterosaurs. Neues Jahrb. für Geol. und Palaöntologie–Abh. 1996;202:269–285.
Thulborn RA. [Wind-assisted flight of Archaeopteryx] Neues Jahrb. für Geol. und Palaöntologie–Abh. 2003;229:61–74.
Close RA, Rayfield EJ. Functional morphometric analysis of the furcula in Mesozoic birds. PloS ONE. 2012;7:e36664. doi: 10.1371/journal.pone.0036664. PubMed DOI PMC
Viscor G, Fuster JF. Relationships between morphological parameters in birds with different flying habits. Comp. Biochem. Physiol. 1987;87A:231–249. doi: 10.1016/0300-9629(87)90118-6. PubMed DOI
Hone D, Henderson DM, Therrien F, Habib MB. A specimen of Rhamphorhynchus with soft tissue preservation, stomach contents and a putative coprolite. PeerJ. 2015;3:e1191. doi: 10.7717/peerj.1191. PubMed DOI PMC
Bennett SC. A statistical study of Rhamphorhynchus from the Solnhofen Limestone of Germany: year-classes of a single large species. J. Paleontol. 1995;69:569–580. doi: 10.1017/S0022336000034946. DOI
Socha JJ, Jafari F, Munk Y, Byrnes G. How animals glide: from trajectory to morphology. Can. J. Zool. 2015;93:901–924. doi: 10.1139/cjz-2014-0013. DOI
Gishlick, A. D. in
Olson SL, Feduccia A. Flight capability and the pectoral girdle of Archaeopteryx. Nature. 1979;278:247–248. doi: 10.1038/278247a0. DOI
Zheng X, et al. On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum. Proc. Natl Acad. Sci. 2014;111:13900–13905. doi: 10.1073/pnas.1411070111. PubMed DOI PMC
Poore SO, Sánchez-Haiman A, Goslow GE. Wing upstroke and the evolution of flapping flight. Nature. 1997;387:799–802. doi: 10.1038/42930. DOI
Senter P. Scapular orientation in theropods and basal birds, and the origin of flapping flight. Acta Palaeontol. Pol. 2006;51:305–313.
Mayr, G. Pectoral girdle morphology of Mesozoic birds and the evolution of the avian supracoracoideus muscle.
Longrich N. Structure and function of hindlimb feathers in Archaeopteryx lithographica. Paleobiology. 2006;32:417–431. doi: 10.1666/04014.1. DOI
Parsons WL, Parsons KM. Further descriptions of the osteology of Deinonychus antirrhopus (Saurischia, Theropoda) Bull. Buffalo Soc. Nat. Sci. 2009;38:43–54.
Sanchez S, Ahlberg PE, Trinajstic KM, Mirone A, Tafforeau P. Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc. Microanal. 2012;18:1095–1105. doi: 10.1017/S1431927612001079. PubMed DOI
Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002;206:33–40. doi: 10.1046/j.1365-2818.2002.01010.x. PubMed DOI
Cubo J, Casinos A. Incidence and mechanical significance of pneumatization in the long bones of birds. Zool. J. Linn. Soc. 2000;130:499–510. doi: 10.1111/j.1096-3642.2000.tb02198.x. DOI
Werning S. The ontogenetic osteohistology of Tenontosaurus tilletti. PLoS ONE. 2012;7:e33539. doi: 10.1371/journal.pone.0033539. PubMed DOI PMC
White MA, et al. New forearm elements discovered of holotype specimen Australovenator wintonensis from Winton, Queensland, Australia. PloS ONE. 2012;7:e39364. doi: 10.1371/journal.pone.0039364. PubMed DOI PMC
Woodward HN, Horner JR, Farlow JO. Quantification of intraskeletal histovariability in Alligator mississippiensis and implications for vertebrate osteohistology. PeerJ. 2014;2:e422. doi: 10.7717/peerj.422. PubMed DOI PMC
Bybee PJ, Lee AH, Lamm ET. Sizing the Jurassic theropod dinosaur Allosaurus: assessing growth strategy and evolution of ontogenetic scaling of limbs. J. Morphol. 2006;267:347–359. doi: 10.1002/jmor.10406. PubMed DOI
Barthel, K. W., Swinburne, N. H. M., Conway Morris, S.
Lee AH, Simons ELR. Wing bone laminarity is not an adaptation for torsional resistance in bats. PeerJ. 2015;3:e823. doi: 10.7717/peerj.823. PubMed DOI PMC
Callison G, Quimby HM. Tiny dinosaurs: are they fully grown? J. Vertebr. Paleontol. 1984;3:200–209. doi: 10.1080/02724634.1984.10011975. DOI
Habib MB, Ruff CB. The effects of locomotion on the structural characteristics of avian limb bones. Zool. J. Linn. Soc. 2008;153:601–624. doi: 10.1111/j.1096-3642.2008.00402.x. DOI
De Magalhaes JP, Costa J. A database of vertebrate longevity records and their relation to other life‐history traits. J. Evolut. Biol. 2009;22:1770–1774. doi: 10.1111/j.1420-9101.2009.01783.x. PubMed DOI
del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & de Juana, E.
Batty, J.
Mackie, R. & White, B. (eds.)
Paul, G. S.
Livezey BC. Morphometrics of flightlessness in the Alcidae. Auk. 1988;105:681–698.
Paul, G. S.
Andrews C. On some fossil remains of carinate birds from Central Madagascar. Ibis. 1897;39:343–359. doi: 10.1111/j.1474-919X.1897.tb03281.x. DOI
Witton, M. P. in
Kellner AWA, Tomida Y. Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian-Albian), northeastern Brazil. Natl Sci. Mus. Monogr. 2000;17:1–135.
Veldmeijer AJ. Pterosaurs from the Lower Cretaceous of Brazil in the Stuttgart Collection. Stuttg. Beitr. Nat. Ser. B. 2002;327:1–27.
Wellnhofer P. Weitere Pterosaurierfunde aus der Santana-Formation (Apt) der Chapada do Araripe, Brasilien. Palaeontogr. Abt. A. 1991;187:43–101.
Henderson DM. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 2010;30:768–785. doi: 10.1080/02724631003758334. DOI
Masser MP. Alligator production: grow-out and harvest. SRAC Publ. 1993;232:1–4.
Huchzermeyer, F. W.
Castanet J, Grandin A, Abourachid A, de Ricqlès A. (1996). [Expression de la dynamique de croissance dans la structure de l’os périostique chez Anas platyrhynchos] Comptes Rendus De. l’Académie Des. Sci.–Ser. III. 1996;319:301–308. PubMed
Daegling DJ. Estimation of torsional rigidity in primate long bones. J. Human. Evol. 2002;43:229–239. doi: 10.1006/jhev.2002.0574. PubMed DOI
Ruff CB, Burgess ML, Bromage TG, Mudakikwa A, McFarlin SC. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei) J. Human. Evol. 2013;65:693–703. doi: 10.1016/j.jhevol.2013.06.008. PubMed DOI
de Buffrénil V, Houssaye A, Böhme W. Bone vascular supply in monitor lizards (Squamata: Varanidae): influence of size, growth, and phylogeny. J. Morphol. 2008;269:533–543. doi: 10.1002/jmor.10604. PubMed DOI
Legendre L, et al. Phylogenetic signal in bone histology of amniotes revisited. Zool. Scr. 2013;42:44–53. doi: 10.1111/j.1463-6409.2012.00564.x. DOI
Cubo J, Baudin J, Legendre L, Quilhac A, De Buffrénil V. Geometric and metabolic constraints on bone vascular supply in diapsids. Biol. J. Linn. Soc. 2014;112:668–677. doi: 10.1111/bij.12331. DOI
Wilson LE, Chin K. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure. R. Soc. Open Sci. 2014;1:140245. doi: 10.1098/rsos.140245. PubMed DOI PMC
Carlson KJ. Investigating the form-function interface in African apes: relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses. Am. J. Phys. Anthropol. 2005;127:312–334. doi: 10.1002/ajpa.20124. PubMed DOI
Patel BA, Ruff CB, Simons ELR, Organ JM. Humeral cross-sectional shape in suspensory primates and sloths: long bone cross-sectional shape. Anat. Rec. 2013;296:545–556. doi: 10.1002/ar.22669. PubMed DOI
Bertram JE, Biewener AA. Bone curvature: sacrificing strength for load predictability? J. Theor. Biol. 1988;131:75–92. doi: 10.1016/S0022-5193(88)80122-X. PubMed DOI
Turvey, S. T. (ed.)
Bengtson SA. Breeding ecology and extinction of the great auk (Pinguinus impennis): anecdotal evidence and conjectures. Auk. 1984;101:1–12. doi: 10.2307/4086356. DOI
Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC
Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–573. doi: 10.1038/nature15697. PubMed DOI
Madison, W. P. & Madison, D. R.
Garland T, Dickerman AW, Janis CM, Jones JA. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 1993;42:265–292. doi: 10.1093/sysbio/42.3.265. DOI
Revell LJ. Size‐correction and principal components for interspecific comparative studies. Evolution. 2009;63:3258–3268. doi: 10.1111/j.1558-5646.2009.00804.x. PubMed DOI
Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
R. Core Team.
R Studio Team R Studio: Integrated Development for R. R Studio, Inc. (2015).
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K.
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI
Schmitz L, Motani R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science. 2011;332:705–708. doi: 10.1126/science.1200043. PubMed DOI
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. [PAST: Paleontological statistics software package for education and data analysis].