Helminth Parasites of Invasive Freshwater Fish in Lithuania
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
S-MIP-22-53.
Lietuvos Mokslo Taryba
PubMed
39595347
PubMed Central
PMC11591254
DOI
10.3390/ani14223293
PII: ani14223293
Knihovny.cz E-zdroje
- Klíčová slova
- Baltic freshwater ecosystems, Neogobius spp., Perccottus glenii, Pseudorasbora parva, aquatic invasion, morphological and molecular identification,
- Publikační typ
- časopisecké články MeSH
Freshwater ecosystems in Lithuania are threatened by the introduction of invasive fish species including Neogobius fluviatilis, N. melanostomus, Perccottus glenii, and Pseudorasbora parva. Data on helminth parasites of these fishes have not been comprehensively studied, with only two reports on parasites of N. melanostomus from the Curonian Lagoon and Baltic Sea, Lithuania. We examined 278 fish individuals representing 4 invasive species from 13 waterbodies. Using morphological and molecular analyses, we identified 29 helminth taxa representing 15 digenean trematodes, 6 nematodes, 4 cestodes, 2 acanthocephalans, and 2 monogeneans. With 18 species, N. fluviatilis had the highest helminth diversity, followed by N. melanostomus (11 species) and Ps. parva (8 species). Perccottus glenii was found to be free from helminth infection. The availability of historical information on the native fish parasites in Lithuania allowed us to conclude that out of the 29 recorded species, invasive fish serve as hosts for 22 local fish helminth species, while 7 helminth species have been reported exclusively in invasive fish. Based on newly obtained and previously published data, a total of 34 helminth species parasitise invasive fish in Lithuania, of which 30 use these fish as intermediate or paratenic hosts.
Zobrazit více v PubMed
Bellard C., Cassey P., Blackburn T.M. Alien species as a driver of recent extinctions. Biol. Lett. 2016;12:20150623. doi: 10.1098/rsbl.2015.0623. PubMed DOI PMC
Dueñas M.-A., Hemming D.J., Roberts A., Diaz-Soltero H. The threat of invasive species to IUCN-listed critically endangered species: A systematic review. Glob. Ecol. Conserv. 2021;26:e01476. doi: 10.1016/j.gecco.2021.e01476. DOI
Cohen A.N. Success factors in the establishment of human dispersed organisms. In: Bullock J.M., Kenward R.E., Hails R.S., editors. Dispersal Ecology. Blackwell; London, UK: 2002. pp. 374–394.
Ricciardi A. Predicting the impacts of an introduced species from its invasion history: An empirical approach applied to zebra mussel invasions. Freshw. Biol. 2003;48:972–981. doi: 10.1046/j.1365-2427.2003.01071.x. DOI
Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.H., Soto D., Stiassny M.L., et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI
Cucherousset J., Olden J.D. Ecological impacts of nonnative freshwater fishes. Fisheries. 2011;36:215–230. doi: 10.1080/03632415.2011.574578. DOI
Gozlan R.E., Britton J.R., Cowx I., Copp G.H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 2010;6:751–786. doi: 10.1111/j.1095-8649.2010.02566.x. DOI
Lymbery A.J., Morine M., Kanani H.G., Beatty S.J., Morgan D.L. Co-invaders: The effects of alien parasites on native hosts. Int. J. Parasitol. Parasites Wildl. 2014;3:171–177. doi: 10.1016/j.ijppaw.2014.04.002. PubMed DOI PMC
Poulin R. Invasion ecology meets parasitology: Advances and challenges. Int. J. Parasitol. Parasites. Wildl. 2017;6:361–363. doi: 10.1016/j.ijppaw.2017.03.006. PubMed DOI PMC
Gudžinskas Z., Petrulaitis L., Uogintas D., Vaitonis G., Balčiauskas L., Rakauskas V., Arbačiauskas K., Butkus R., Karalius S., Janulaitienė L., et al. In: Invasive and Alien Species in Lithuania. Gudžinskas Z., Rašomavičius V., editors. Nature Research Centre; Vilnius, Lithuania: 2023. pp. 1–311.
Wolter C., Röhr F. Distribution history of non-native freshwater fish species in Germany: How invasive are they? J. Appl. Ichthyol. 2010;26:19–27. doi: 10.1111/j.1439-0426.2010.01505.x. DOI
Semenchenko V., Grabowska J., Grabowski M., Rizevsky V., Pluta M. Non-native fish in Belarusian and Polish areas of the European central invasion corridor. Oceanol. Hydrobiol. Stud. 2011;40:57–67. doi: 10.2478/s13545-011-0007-6. DOI
Arbačiauskas K., Višinskiene G., Smilgevičiene S., Rakauskas V. Non-indigenous macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and future. Knowl. Manag. Aquat. Ecosyst. 2011;402:12. doi: 10.1051/kmae/2011075. DOI
Rizevsky V.K., Ermolaeva I.A., Leschenko A.V., Kudritskaya A.P. Monkey goby Neogobius fluviatilis—The alien Ponto-Caspian fish species in the Neman River basin. Dokl. Natl. Acad. Sci. Belarus. 2015;59:83–87. (In Russian)
Rakauskas V., Virbickas T., Skrupskelis K., Kesminas V. Delayed expansion of Ponto-Caspian gobies (Pisces, Gobiidae, Benthophilinae) in the Nemunas River drainage basin, the northern branch of the central European invasion corridor. BioInvasions Rec. 2018;7:143–152. doi: 10.3391/bir.2018.7.2.05. DOI
Rakauskas V., Bacevičius E., Pūtys Ž., Ložys L., Arbačiauskas K. Expansion, feeding and parasites of the round goby, Neogobius melanostomus (Pallas, 1811), a recent invader in the Curonian Lagoon, Lithuania. Acta Zool. Litu. 2008;18:180–190. doi: 10.2478/v10043-008-0030-z. DOI
Semenchenko V.P., Rizevsky V.K., Mastitsky S.E., Vezhnovets V., Pluta M.V., Razlutsky V.I., Laenko T. Checklist of aquatic alien species established in large river basins of Belarus. Aquat. Invasions. 2009;4:337–347. doi: 10.3391/ai.2009.4.2.5. DOI
Rakauskas V., Virbickas T., Steponėnas A. Several decades of the two invasive fish species (Perccottus glenii, Pseudorasbora parva) of European concern in Lithuanian inland waters; from first appearance to current state. J. Vertebr. Biol. 2021;70:21048. doi: 10.25225/jvb.21048. DOI
Llopis-Belenguer C., Blasco-Costa I., Balbuena J.A., Sarabeev V., Stouffer D.B. Native and invasive hosts play different roles in host–parasite networks. Ecography. 2020;43:559–568. doi: 10.1111/ecog.04963. DOI
Marcogliese D.J. Food webs and the transmission of parasites to marine fish. Parasitology. 2002;24:83–99. doi: 10.1017/S003118200200149X. PubMed DOI
Perdiguero-Alonso D., Montero F.E., Raga J.A., Kostadinova A. Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae), in the North East Atlantic. Parasit. Vectors. 2008;1:23. doi: 10.1186/1756-3305-1-23. PubMed DOI PMC
Herlevi H., Puntila R., Kuosa H., Fagerholm H.-P. Infection rates and prevalence of metazoan parasites of the non-native round goby (Neogobius melanostomus) in the Baltic Sea. Hydrobiologia. 2017;792:265–282. doi: 10.1007/s10750-016-3062-6. DOI
Kažys J. Waters. In: Eidukevičienė M., editor. Natural Geography of Lithuania. Lietuvos Gamtine Geografija, Klaipedos Universiteto Leidykla; Klaipėda, Lithuania: 2013. pp. 88–126. (In Lithuanian)
Rakauskas V., Stakėnas S., Virbickas T., Bukelskis E. Nonindigenous fish in the northern branch of the central European invasion corridor. Rev. Fish Biol. Fish. 2016;26:491–508. doi: 10.1007/s11160-016-9438-x. DOI
Thoresson G. Guidelines for Coastal Monitoring: Fishery Biology. Kustrapport 1. National Board of Fisheries, Institute of Coastal Research; Öregrund, Sweden: 1993.
Kottelat M., Freyhof J. Handbook of European Freshwater Fishes. Kottelat, Cornol and Freyhof; Berlin, Germany: 2007. 646p
Froese R., Pauly D. FishBase. World Wide Web Electronic Publication. [(accessed on 10 August 2024)]. Available online: www.fishbase.org.
Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997;83:575–583. doi: 10.2307/3284227. PubMed DOI
Suzuki N., Murakami K., Takeyama H., Chow S. Molecular attempt to identify prey organisms of lobster phyllosoma larvae. Fish Sci. 2006;72:342–349. doi: 10.1111/j.1444-2906.2006.01155.x. DOI
Littlewood D.T.J. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol. Phyl. Evol. 1994;3:221–229. doi: 10.1006/mpev.1994.1024. PubMed DOI
Lockyer A.E., Olson P.D., Littlewood D.T.J. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): Implications and a review of the cercomer theory. Biol. J. Linn. Soc. 2003;78:155–171. doi: 10.1046/j.1095-8312.2003.00141.x. DOI
Scholz T., de Chambrier A., Kuchta R., Littlewood D.T.J., Waeschenbach A. Macrobothriotaenia ficta (Cestoda: Proteocephalidea), a parasite of sunbeam snake (Xenopeltis unicolor): Example of convergent evolution. Zootaxa. 2013;3640:485–499. doi: 10.11646/zootaxa.3640.3.12. PubMed DOI
Tkach V.V., Littlewood D.T., Olson P.D., Kinsella J.M., Swiderski Z. Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea) Syst. Parasitol. 2003;56:1–15. doi: 10.1023/A:1025546001611. PubMed DOI
Hassouna N., Michot B., Bachellerie J.P. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res. 1984;12:3563–3583. doi: 10.1093/nar/12.8.3563. PubMed DOI PMC
Svitin R., Truter M., Kudlai O., Smit N.J., du Preez L. Novel information on the morphology, phylogeny and distribution of camallanid nematodes from marine and freshwater hosts in South Africa, including the description of Camallanus sodwanaensis n. sp. Int. J. Parasitol. Parasites Wildl. 2019;10:263–273. doi: 10.1016/j.ijppaw.2019.09.007. PubMed DOI PMC
Bachellerie J.P., Qu L.H. Ribosomal RNA probes for detection and identification of species. Methods Mol. Biol. 1993;21:249–263. doi: 10.1385/0-89603-239-6:249. PubMed DOI
Van Steenkiste N., Locke S.A., Castelin M., Marcogliese D.J., Abbott C.L. New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes) Mol. Ecol. Resour. 2015;15:945–952. doi: 10.1111/1755-0998.12358. PubMed DOI
Wee N.-Q.-X., Cribb T.H., Bray R.A., Cutmore S.C. Two known and one new species of Proctoeces from Australian teleosts: Variable host-specificity for closely related species identified through multi-locus molecular data. Parasitol. Int. 2017;66:16–26. doi: 10.1016/j.parint.2016.11.008. PubMed DOI
Garey J.R., Wolstenholme D.R. Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNA ser AGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J. Mol. Evol. 1989;28:374–387. doi: 10.1007/BF02603072. PubMed DOI
Ohama T., Osawa S., Watanabe K., Jukes T.H. Evolution of the mitochondrial genetic code IV. AAA as an asparagine codon in some animal mitochondria. J. Mol. Evol. 1990;30:329–332. doi: 10.1007/BF02101887. PubMed DOI
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Rambaut A. FigTree V1. 4. Molecular Evolution, Phylogenetics and Epidemiology. 2012. [(accessed on 10 January 2018)]. Available online: http://tree.bio.ed.ac.uk/software/figtree/
Moszczynska A., Locke S.A., McLaughlin J.D., Marcogliese D.J., Crease T.J. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol. Ecol. Resour. 2009;9:75–82. doi: 10.1111/j.1755-0998.2009.02634.x. PubMed DOI
Locke S.A., McLaughlin D., Marcogliese D.J. DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River. Canada. Mol. Ecol. 2010;19:2813–2827. doi: 10.1111/j.1365-294X.2010.04713.x. PubMed DOI
Soldánová M., Georgieva S., Roháčová J., Knudsen R., Kuhn J.A., Henriksen E.H., Siwertsson A., Shaw J.C., Kuris A.M., Amundsen P.A., et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 2017;47:327–345. doi: 10.1016/j.ijpara.2016.12.008. PubMed DOI
Faltýnková A., Kudlai O., Pantoja C., Jouet D., Skírnisson K. Prey-mimetism in cercariae of Apatemon (Digenea, Strigeidae) in freshwater in northern latitudes. Parasitol. Res. 2023;122:815–831. doi: 10.1007/s00436-023-07779-6. PubMed DOI
Schwelm J., Kudlai O., Smit N.J., Selbach C., Sures B. High parasite diversity in a neglected host: Larval trematodes of Bithynia tentaculata in Central Europe. J. Helminthol. 2020;94:e120. doi: 10.1017/S0022149X19001093. PubMed DOI
Lisitsyna O.I. Fauna of Ukraine, Acanthocephala. Volume 31. Naukova Dumka; Kyiv, Ukraine: 2019. pp. 1–223. (In Russian)
Kvach Y., Ondračková M. Checklist of parasites for Ponto-Caspian gobies (Actinopterygii: Gobiidae) in their native and non-native ranges. J. Appl. Ichthyol. 2020;36:472–500. doi: 10.1111/jai.14036. DOI
Ojaveer H., Turovski A., Nõomaa K. Parasite infection of the non-indigenous round goby (Neogobius melanostomus) in the Baltic Sea. Aquat. Invasions. 2020;15:160–176. doi: 10.3391/ai.2020.15.1.11. DOI
Leidenberger S., Boström S., Wayland M.T. Host records and geographical distribution of Corynosoma magdaleni, C. semerme and C. strumosum (Acanthocephala: Polymorphidae) Biodivers. Data J. 2020;8:e50500. doi: 10.3897/BDJ.8.e50500. PubMed DOI PMC
Scholz T., Kuchta R., Shinn A.P., Snábel V., Hanzelová V. Host specificity and geographical distribution of Eubothrium in European salmonid fish. J. Helminthol. 2003;77:255–262. doi: 10.1079/JOH2003188. PubMed DOI
Moravec F., Scholz T. Helminth parasites of the lesser great cormorant Phalacrocorax carbo sinensis from two nesting regions in the Czech Republic. Folia Parasitol. 2016;63:22. doi: 10.14411/fp.2016.022. PubMed DOI
Švažas S., Chukalova N., Grishanov G., Pūtys Ž., Sruoga A., Butkauskas D., Raudonikis L., Prakas P. The role of great cormorant (Phalacrocorax carbo sinensis) for fish stock and dispersal of helminthes parasites in the Curonian Lagoon area. Vet. Zootech. 2011;55:79–85.
Oros M., Choudhury A., Scholz T. A common Eurasian fish tapeworm, Caryophyllaeides fennica (Cestoda), in western North America: Further evidence of ‘Amphi-Pacific’ vicariance in freshwater fish parasites. J. Parasitol. 2017;103:486–496. doi: 10.1645/16-80. PubMed DOI
Uhrovič D., Oros M., Kudlai O., Kuchta R., Scholz T. Archigetes Leuckart, 1878 (Cestoda, Caryophyllidea): Diversity of enigmatic fish tapeworms with monoxenic life cycles. Parasite. 2022;29:6. doi: 10.1051/parasite/2022002. PubMed DOI PMC
Niewiadomska K. Family Cyathocotylidae Mühling, 1898. In: Gibson D.I., Jones A., Bray R.A., editors. Keys to the Trematoda. Volume 1. CABI Publishing and Natural History Museum; Wallingford, UK: 2002. pp. 201–214.
Mierzejewska K., Kvach Y., Stańczak K., Grabowska J., Woźniak M., Dziekońska-Rynko J., Ovcharenko M. Parasites of non-native gobies in the Włocławek Reservoir on the lower Vistula River, first comprehensive study in Poland. Knowl. Managt. Aquatic Ecosyst. 2014;414:1. doi: 10.1051/kmae/2014011. DOI
Pearson J. Family Heterophyidae Leiper, 1909. In: Bray R.A., Gibson D.I., Jones A., editors. Keys to the Trematoda. Volume 3. CABI Publishing and Natural History Museum; Wallingford, UK: 2008. pp. 113–141.
Ondračková M., Seifertová M., Tkachenko M.Y., Vetešník L., Liu H., Demchenko V., Kvach Y. The parasites of a successful invader: Monogeneans of the Asian topmouth gudgeon Pseudorasbora parva, with description of a new species of Gyrodactylus. Parasite. 2023;30:22. doi: 10.1051/parasite/2023024. PubMed DOI PMC
Naidenova N.N. Parasite Fauna of Gobiid Fishes of the Black Sea and Sea of Azov. Naukova Dumka; Kiev, Ukraine: 1974. pp. 1–182. (In Russian)
Moravec F. Parasitic Nematodes of Freshwater Fishes of Europe. 2nd ed. Academia; Prague, Czech Republic: 2013. pp. 1–601.
Anderson R.C. Nematode Parasites of Vertebrates: Their Development and Transmission. CABI Publisher; Wallingford, UK: 2000. pp. 1–650.
Rauckis E. Parasites of Fishes in Lithuanian Water Bodies. Mokslas; Vilnius, Lithuania: 1988. pp. 1–205. (In Russian)
Zettler M.L., Daunys D. Long-term macrozoobenthos changes in a shallow boreal lagoon: Comparison of a recent biodiversity inventory with historical data. Limnologica. 2007;37:170–185. doi: 10.1016/j.limno.2006.12.004. DOI
Rakauskas V., Pūtys Ž., Dainys J., Lesutienė J., Ložys L., Arbačiauskas K. Increasing population of the invader round goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and its trophic role in the Curonian Lagoon, SE Baltic Sea. Acta Ichthyol. Piscat. 2013;43:95–108. doi: 10.3750/AIP2013.43.2.02. DOI
Czerniejewski P., Rybczyk A., Linowska A., Sobecka E. New location, food composition, and parasitic fauna of the invasive fish Pseudorasbora parva (Temminck & Schlegel, 1846) (Cyprinidae) in Poland. Turk. J. Zool. 2019;43:94–105. doi: 10.3906/ZOO-1806-26. DOI
Czerniejewski P., Brysiewicz A., Rząd I., Eljasik P., Kirczuk L., Dziewulska K. Population structure and parasite fauna of stone moroko, Pseudorasbora parva (Temminck et Schlegel, 1846) in a watercourse of the Oder catchment area (‘Central Plains’ European Ecoregion) Eur. Zool. J. 2023;90:568–583. doi: 10.1080/24750263.2023.2226686. DOI
Kutsokon I., Tkachenko M., Bondarenko O., Pupins M., Snigirova A., Berezovska V., Čeirāns A., Kvach Y. The role of invasive Chinese sleeper Perccottus glenii Dybowski, 1877 in the Ilgas Nature Reserve ecosystem: An example of a monospecific fish community. BioInvasions Rec. 2021;10:396–410. doi: 10.3391/bir.2021.10.2.18. DOI
Mierzejewska K., Kvach Y., Wozniak M., Kosowska A., Dziekonska-Rynko J. Parasites of an Asian fish, the Chinese sleeper Perccottus glenii, in the Włocławek Reservoir on the Lower Vistula River, Poland: In search of the key species in the host expansion process. Comp. Parasitol. 2012;79:23–29. doi: 10.1654/4519.1. DOI
Vanhove M.P.M., Economou A.N., Zogaris S., Giakoumi S., Zanella D., Volckaert F.A.M., Huyse T. The Gyrodactylus (Monogenea, Gyrodactylidae) parasite fauna of freshwater sand gobies (Teleostei, Gobioidei) in their centre of endemism, with description of seven new species. Parasitol. Res. 2014;113:653–668. doi: 10.1007/s00436-013-3693-8. PubMed DOI