Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31350352
PubMed Central
PMC6708381
DOI
10.1073/pnas.1907571116
PII: 1907571116
Knihovny.cz E-zdroje
- Klíčová slova
- accidental release, environmental radioactivity, environmental release, nuclear forensics, ruthenium,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In October 2017, most European countries reported unique atmospheric detections of aerosol-bound radioruthenium (106Ru). The range of concentrations varied from some tenths of µBq·m-3 to more than 150 mBq·m-3 The widespread detection at such considerable (yet innocuous) levels suggested a considerable release. To compare activity reports of airborne 106Ru with different sampling periods, concentrations were reconstructed based on the most probable plume presence duration at each location. Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation). The 106Ru age was estimated to be about 2 years. It exhibited highly soluble and less soluble fractions in aqueous media, high radiopurity (lack of concomitant radionuclides), and volatility between 700 and 1,000 °C, thus suggesting a release at an advanced stage in the reprocessing of nuclear fuel. The amount and isotopic characteristics of the radioruthenium release may indicate a context with the production of a large 144Ce source for a neutrino experiment.
Atominstitut Vienna University of Technology 1020 Vienna Austria
Center for Nuclear Technologies Technical University of Denmark Risø DK 4000 Roskilde Denmark
Central Laboratory for Radiological Protection PL 03 134 Warsaw Poland
Centre for Energy Research Hungarian Academy of Sciences 1121 Budapest Hungary
Department of Nuclear Physics and Biophysics Comenius University 84248 Bratislava Slovakia
Department of Radon and Radioecology Austrian Agency for Health and Food Safety 4020 Linz Austria
Deutscher Wetterdienst 63067 Offenbach Germany
Division de la Radioprotection Ministère de la Santé L 2120 Luxembourg Luxembourg
Environmental Monitoring Radiation and Nuclear Safety Authority FI 00881 Helsinki Finland
Environmental Protection Agency 09311 Vilnius Lithuania
Environmental Radioactivity Section Federal Office of Public Health CH 3097 Liebefeld Switzerland
Health Canada Ottawa K1A 1C1 ON Canada
Institute for Medical Research and Occupational Health 10001 Zagreb Croatia
Institute of Meteorology and Water Management National Research Institute 01673 Warsaw Poland
Institute of Radiation Medicine Helmholtz Zentrum München 85764 Neuherberg Germany
National Commission for Nuclear Activities Control District 5 050706 Bucharest Romania
National Reference Laboratory National Environmental Protection Agency 060031 Bucharest Romania
Observatoire Pérenne de l'Environnement Agence Nationale des Déchets Radioactifs 55290 Bure France
Radiation Inspection and Control Services Department of Labour Inspection CY 1080 Nicosia Cyprus
Radioactivity Measurements Laboratory University of Bremen 28359 Bremen Germany
Radiology Laboratories Institute of Public Health 1000 Skopje North Macedonia
Safety Department Kozloduy Nuclear Power Plant 3321 Kozloduy Bulgaria
Section of Monitoring National Radiation Protection Institute 140 00 Prague 4 Czech Republic
StudieCentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire 2400 Mol Belgium
Zobrazit více v PubMed
Masson O., et al. , Potential source apportionment and meteorological conditions involved in airborne 131I detections in January/February 2017 in Europe. Environ. Sci. Technol. 52, 8488–8500 (2018). PubMed
Roshydromet , On emergency, extremely high and high pollution of the environment in the territory of the Russian Federation in the period from 6 to 13 October 2017 (Об аварийном, экстремально высоком и высоком загрязнении окружающей среды на территории Российской Федерации в период с 6 по 13 октября 2017 года) [in Russian] (2017). http://www.meteorf.ru/product/infomaterials/91/15078/?sphrase_id=134576. Accessed 1 March 2018.
Production Association Mayak (2017). https://po-mayak.ru/wps/wcm/connect/mayak/site/info/news_main/094f7100436c8c33a8eca8e03176b6c3. Accessed 1 March 2018 (site discontinued).
Nuclear Engineering International , Russian commission says Mayak not the source of Ru-106 (2017). https://www.neimagazine.com/news/newsrussian-commission-says-mayak-not-the-source-of-ru-106-6000301/. Accessed 12 March 2018.
IBRAE , 2nd meeting of the international independent scientific commission for investigation of Ru-106 case in Europe in September–October 2017 (2018). http://en.ibrae.ac.ru/newstext/911/. Accessed 27 July 2018.
Federal Service for Hydrometeorology and Environmental Monitoring , Typhoon Association (2018). www.rpatyphoon.ru. Accessed 5 March 2018.
Roshydromet , Report on the causes and source of ruthenium-106 on the territory of Russia in September-October 2017 (Отчет по определению причин и источника рутения-106 на территории России в сентябре-октябре 2017 года) [in Russian] (2017). http://egasmro.ru/files/documents/reports/report_28_12_2017.pdfs. Accessed 15 May 2018.
EGASMRO , Radiation situation on the territory of the Russian Federation (Радиационная обстановка на территории РФ) [in Russian] (2018). http://egasmro.ru/ru. Accessed 1 March 2018.
CTBTO , Verification regime (2018). https://www.ctbto.org/verification-regime/. Accessed 5 March 2018.
Ramebäck H., et al. , Measurements of 106Ru in Sweden during the autumn 2017: Gamma-ray spectrometric measurements of air filters, precipitation and soil samples, and in situ gamma-ray spectrometry measurement. Appl. Radiat. Isot. 140, 179–184 (2018). PubMed
Paatero J., Kulmala S., Jaakkola T., Saxén R., Buyukay M., Deposition of 125Sb, 106Ru, 144Ce, 134Cs and 137Cs in Finland after the Chernobyl accident. Boreal Environ. Res. 12, 43–54 (2007).
UNSCEAR , Exposures and Effects of the Chernobyl Accident (Annex J) (United Nations, New York, 2000).
Yamamoto T., Radioactivity of fission product and heavy nuclides deposited on soil in Fukushima Dai-Ichi Nuclear Power Plant accident. J. Nucl. Sci. Technol. 49, 1116–1133 (2012).
Steinhauser G., Fukushima’s forgotten radionuclides: A review of the understudied radioactive emissions. Environ. Sci. Technol. 48, 4649–4663 (2014). PubMed
Hölgye Z., Křivánek M., On the volatility of ruthenium. J. Radioanal. Chem. 42, 133–141 (1978).
Zok D., Sterba J. H., Steinhauser G., Chemical and radioanalytical investigations of 106Ru-containing air filters from Vienna in fall 2017: Searching for stable element anomalies. J. Radioanal. Nucl. Chem. 318, 415–421 (2018). PubMed PMC
Quélo D., et al. , Validation of the polyphemus platform on the ETEX, Chernobyl and Algeciras cases. Atmos. Environ. 41, 5300–5315 (2007).
IAEA , Status of Measurements of Ru-106 in Europe (IAEA, Vienna, 2017), p. 19.
Rosatom, The comment of The State Atomic Energy Corporation ROSATOM for the Media, 22 November 2017 (2017). https://rosatom.ru/en/press-centre/news/the-comment-of-the-state-atomic-energy-corporation-rosatom-for-the-media/. Accessed 4 June 2018.
Penev I., Angelov H., Arsov T., Georgiev S., Uzunov N., 106Ru aerosol activity observation above southeast Europe in October 2017. Dokl. Bulg. Akad. Nauk. 71, 613–618 (2018).
Jakab D., et al. , Methods, results and dose consequences of 106Ru detection in the environment in Budapest, Hungary. J. Environ. Radioact. 192, 543–550 (2018). PubMed
NTI, Mayak Production Association (2014). https://www.nti.org/learn/facilities/894/. Accessed 12 June 2019.
Jones S., Windscale and Kyshtym: A double anniversary. J. Environ. Radioact. 99, 1–6 (2008). PubMed
Nikipelov B. V., et al. , Accident in the southern Urals on 29 September 1957 (International Atomic Energy Agency Report INFCIRC-368, International Atomic Energy Agency, Vienna, 1989).
IAEA , “Significant incident in nuclear fuel cycle facilities” (IAEA-TECDOC-867, IAEA, Vienna, 1996).
IAEA , The Radiological Accident at the Reprocessing Plant at Tomsk (IAEA, Vienna, 1998).
Husebye E. S., Dainty A. M., Monitoring a Comprehensive Test Ban Treaty (NATO Science Series E, NATO Advanced Study Institute, Springer, Alvor, 1996).
Nord-Cotentin G., Analyse de 2 incidents de rejet atmosphérique de ruthénium 106 en 2001 [in French] (2002). http://www.gep-nucleaire.org/. Accessed 12 June 2019.
Heeb C. M., “Radionuclide releases to the Atmosphere from Hanford operations, 1944-1972” (PNWD-2222 HEDR, Pacific Northwest Laboratories, Richland, WA, 1994).
Padovani S., Mitsios I., Anagnostakis M., Mostacci D., Analysis of the vertical distribution and size fractionation of natural and artificial radionuclides in soils in the vicinity of hot springs. Radiat. Eff. Defects Solids 173, 794–806 (2018).
EGASMRO , Bulletin on the radiation situation in Russia in October 2017 (БЮЛЛЕТЕНЬ о радиационной обстановке на территории России в октябре 2017 г) [in Russian] (2017). http://egasmro.ru/files/documents/ro_bulletins/byulleten_rorf_10_2017.pdf. Accessed 4 March 2019.
EGASMRO , Bulletin on the radiation situation in Russia in October 2017 (БЮЛЛЕТЕНЬ о радиационной обстановке на территории России в сентябре 2017 г) [in Russian] (2017). http://egasmro.ru/files/documents/ro_bulletins/byulleten_rorf_09_2017.pdf. Accessed 4 March 2019.
CRIIRAD , Ruthenium-106 contamination (Contamination par le ruthénium 106) [in French] (2018). http://www.criirad.org/accident-et-pollutions/Note_CRIIRAD_N_18-21_Ru_106_Mayak.pdf. Accessed 4 March 2019.
Pfeiffer F., et al. , Waste specification and quantity structure (Abfallspezifikation und Mengengerüst, GRS-278) [in German] (2011). https://www.grs.de/publication/grs-278-abfallspezifikation-und-mengengeruest-basis-ausstieg-kernenergienutzung. Accessed 4 March 2019.
Cartlidge E., Isotope cloud linked to failed neutrino source. Science 359, 729 (2018). PubMed
Cribier M., et al. , Proposed search for a fourth neutrino with a PBq antineutrino source. Phys. Rev. Lett. 107, 201801 (2011). PubMed
Vivier M., et al. , SOX: Search for short baseline neutrino oscillations with Borexino. J. Phys. Conf. Ser. 718, 062066 (2016).
Irfu, Institut de recherche sur les lois fondamentales de l’Univers (2018). http://irfu.cea.fr/Phocea/Vie_des_labos/Ast/. Accessed 1 March 2018.
Meyer M., “SOX–Towards the detection of sterile neutrinos in Borexino: Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino,” PhD thesis, Universität Hamburg, Germany (2016).
Gerasimov A. S., Kornoukhov V. N., Sald’ikov I. S., Tikhomirov G. V., Production of high specific activity 144Ce for artificial sources of antineutrinos. At. Energy 116, 54–59 (2014).
Compagnie Générale des Matières Nucléaires (COGEMA) , Specifications of Vitrified Residues Produced from Reprocessing at UP-2 or UP-3 La Hague Plants (COGEMA, Second Series, 1986).
Altenmüller K., et al. , The search for sterile neutrinos with SOX-Borexino. Phys. At. Nucl. 79, 1481–1484 (2016).
Lasserre T., et al. , Radioactive source experiments in Borexino. Proceedings of Science 244, 025 (2015).
Mun C., Cantrel L., Madic C., A literature review on ruthenium behavious in nuclear power plant severe accidents (2007). https://hal-irsn.archives-ouvertes.fr/irsn-00177621/document. Accessed 12 June 2019.
Sato S., Endo N., Fukuda K., Morita Y., Optimization for removal of ruthenium from nitric acid solution by volatilizing with electrochemical oxidation. J. Nucl. Sci. Technol. 49, 182–188 (2012).
Maas E. T. Jr, Longo J. M., Confinement of ruthenium oxides volatilized during nuclear fuels reprocessing. Nucl. Technol. 47, 451–456 (1980).
Kim J.-Y., et al. , Template-free synthesis of ruthenium oxide nanotubes for high-performance electrochemical capacitors. ACS Appl. Mater. Interfaces 7, 16686–16693 (2015). PubMed
Hult M., Lutter G., Detection of 106Ru, via the Decay of Its Daughter 106Rh, in Gamma-Ray Spectra (Joint Research Centre, Geel, 2017).