Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017

. 2019 Aug 20 ; 116 (34) : 16750-16759. [epub] 20190726

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31350352

In October 2017, most European countries reported unique atmospheric detections of aerosol-bound radioruthenium (106Ru). The range of concentrations varied from some tenths of µBq·m-3 to more than 150 mBq·m-3 The widespread detection at such considerable (yet innocuous) levels suggested a considerable release. To compare activity reports of airborne 106Ru with different sampling periods, concentrations were reconstructed based on the most probable plume presence duration at each location. Based on airborne concentration spreading and chemical considerations, it is possible to assume that the release occurred in the Southern Urals region (Russian Federation). The 106Ru age was estimated to be about 2 years. It exhibited highly soluble and less soluble fractions in aqueous media, high radiopurity (lack of concomitant radionuclides), and volatility between 700 and 1,000 °C, thus suggesting a release at an advanced stage in the reprocessing of nuclear fuel. The amount and isotopic characteristics of the radioruthenium release may indicate a context with the production of a large 144Ce source for a neutrino experiment.

Atmosphärische Radioaktivität und Spurenanalyse Bundesamt für Strahlenschutz 79098 Freiburg im Breisgau Germany

Atominstitut Vienna University of Technology 1020 Vienna Austria

Basic Environmental Observatory Moussala Institute for Nuclear Research and Nuclear Energy BG 1784 Sofia Bulgaria

Center for Nuclear Technologies Technical University of Denmark Risø DK 4000 Roskilde Denmark

Central Laboratory for Radiological Protection PL 03 134 Warsaw Poland

Centre for Energy Research Hungarian Academy of Sciences 1121 Budapest Hungary

Centre for Environmental Safety and Security National Institute for Public Health and the Environment NL 3720 BA Bilthoven The Netherlands

Centro Regionale Radioprotezione Agenzia Regionale per la Protezione dell'Ambiente della Lombardia 20124 Milan Italy

Chemical Biological Radiological and Nuclear Defence and Security Division Swedish Defence Research Agency 16490 Stockholm Sweden

Computing Centre Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research 27570 Bremerhaven Germany

Department of Nuclear Physical Chemistry The Henryk Niewodniczanski Institute of Nuclear Physics 31 342 Kraków Poland

Department of Nuclear Physics and Biophysics Comenius University 84248 Bratislava Slovakia

Department of Radiation and Environmental Protection Institute for Nuclear Sciences University of Belgrade 11351 Belgrade Serbia

Department of Radiation Protection and Technical Quality Assurance Austrian Agency for Health and Food Safety 1220 Vienna Austria

Department of Radon and Radioecology Austrian Agency for Health and Food Safety 4020 Linz Austria

Deutscher Wetterdienst 63067 Offenbach Germany

Dipartimento Prevenzione Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia Giulia 33100 Udine Italy

Direction de l'Environnement Institut de Radioprotection et de Sûreté Nucléaire 13115 St Paul lez Durance France;

Division de la Radioprotection Ministère de la Santé L 2120 Luxembourg Luxembourg

Division of Environmental and Public Radiohygiene National Research Institute for Radiobiology and Radiohygiene H 1221 Budapest Hungary

Emergency Preparedness and Response Norwegian Radiation and Nuclear Safety Authority NO 9925 Svanvik Norway

Environmental Monitoring Radiation and Nuclear Safety Authority FI 00881 Helsinki Finland

Environmental Protection Agency 09311 Vilnius Lithuania

Environmental Radioactivity Laboratory Physikalisch Technische Bundesanstalt 38116 Braunschweig Germany

Environmental Radioactivity Section Federal Office of Public Health CH 3097 Liebefeld Switzerland

Health Canada Ottawa K1A 1C1 ON Canada

Infrastructural Group for Ionizing Radiation Measurements Institut Jožef Stefan 1000 Ljubljana Slovenia

Institute for Medical Research and Occupational Health 10001 Zagreb Croatia

Institute of Meteorology and Water Management National Research Institute 01673 Warsaw Poland

Institute of Nuclear and Radiological Sciences and Technology Energy and Safety National Centre for Scientific Research Demokritos 15310 Athens Greece

Institute of Radiation Medicine Helmholtz Zentrum München 85764 Neuherberg Germany

Institute of Radioecology and Radiation Protection Leibniz Universität Hannover 30419 Hannover Germany

Institute of Radioecology and Radiation Protection Leibniz Universität Hannover 30419 Hannover Germany;

Laboratoire de Mesure de la Radioactivité dans l'Environnement Institut de Radioprotection et de Sûreté 91400 Orsay France

National Commission for Nuclear Activities Control District 5 050706 Bucharest Romania

National Reference Laboratory National Environmental Protection Agency 060031 Bucharest Romania

Observatoire Pérenne de l'Environnement Agence Nationale des Déchets Radioactifs 55290 Bure France

Office of Radiation Protection and Environmental Monitoring Environmental Protection Agency Dublin D14 H424 Ireland

Radiation Inspection and Control Services Department of Labour Inspection CY 1080 Nicosia Cyprus

Radiation Protection Center Institute for Public Health 71000 Sarajevo Federation of Bosnia and Herzegovina

Radioactivity Measurements Laboratory University of Bremen 28359 Bremen Germany

Radiology Laboratories Institute of Public Health 1000 Skopje North Macedonia

Republican Center of Hydrometeorology Radioactive Contamination Control and Environmental Monitoring 220114 Minsk Belarus

Rivne Nuclear Power Plant National Nuclear Energy Generating Company Energoatom 34400 Rivne Oblast Ukraine

Safety Department Kozloduy Nuclear Power Plant 3321 Kozloduy Bulgaria

Section of Monitoring National Radiation Protection Institute 140 00 Prague 4 Czech Republic

Service des Situations d'Urgence et d'Organisation de Crise Institut de Radioprotection et de Sûreté Nucléaire 92260 Fontenay Aux Roses France

StudieCentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire 2400 Mol Belgium

Tutela dell'Ambiente Naturale e Costruito Dipartimento Prevenzione 47893 Borgo Maggiore Republic of San Marino

Ukrainian Hydrometeorological Center 01601 Kyiv Ukraine

Unidad de Radiactividad Ambiental y Vigilancia Radiológica Centro de Investigaciones Energéticas Medioambientales y Tecnológicas 28040 Madrid Spain

Zobrazit více v PubMed

Masson O., et al. , Potential source apportionment and meteorological conditions involved in airborne 131I detections in January/February 2017 in Europe. Environ. Sci. Technol. 52, 8488–8500 (2018). PubMed

Roshydromet , On emergency, extremely high and high pollution of the environment in the territory of the Russian Federation in the period from 6 to 13 October 2017 (Об аварийном, экстремально высоком и высоком загрязнении окружающей среды на территории Российской Федерации в период с 6 по 13 октября 2017 года) [in Russian] (2017). http://www.meteorf.ru/product/infomaterials/91/15078/?sphrase_id=134576. Accessed 1 March 2018.

Production Association Mayak (2017). https://po-mayak.ru/wps/wcm/connect/mayak/site/info/news_main/094f7100436c8c33a8eca8e03176b6c3. Accessed 1 March 2018 (site discontinued).

Nuclear Engineering International , Russian commission says Mayak not the source of Ru-106 (2017). https://www.neimagazine.com/news/newsrussian-commission-says-mayak-not-the-source-of-ru-106-6000301/. Accessed 12 March 2018.

IBRAE , 2nd meeting of the international independent scientific commission for investigation of Ru-106 case in Europe in September–October 2017 (2018). http://en.ibrae.ac.ru/newstext/911/. Accessed 27 July 2018.

Federal Service for Hydrometeorology and Environmental Monitoring , Typhoon Association (2018). www.rpatyphoon.ru. Accessed 5 March 2018.

Roshydromet , Report on the causes and source of ruthenium-106 on the territory of Russia in September-October 2017 (Отчет по определению причин и источника рутения-106 на территории России в сентябре-октябре 2017 года) [in Russian] (2017). http://egasmro.ru/files/documents/reports/report_28_12_2017.pdfs. Accessed 15 May 2018.

EGASMRO , Radiation situation on the territory of the Russian Federation (Радиационная обстановка на территории РФ) [in Russian] (2018). http://egasmro.ru/ru. Accessed 1 March 2018.

CTBTO , Verification regime (2018). https://www.ctbto.org/verification-regime/. Accessed 5 March 2018.

Ramebäck H., et al. , Measurements of 106Ru in Sweden during the autumn 2017: Gamma-ray spectrometric measurements of air filters, precipitation and soil samples, and in situ gamma-ray spectrometry measurement. Appl. Radiat. Isot. 140, 179–184 (2018). PubMed

Paatero J., Kulmala S., Jaakkola T., Saxén R., Buyukay M., Deposition of 125Sb, 106Ru, 144Ce, 134Cs and 137Cs in Finland after the Chernobyl accident. Boreal Environ. Res. 12, 43–54 (2007).

UNSCEAR , Exposures and Effects of the Chernobyl Accident (Annex J) (United Nations, New York, 2000).

Yamamoto T., Radioactivity of fission product and heavy nuclides deposited on soil in Fukushima Dai-Ichi Nuclear Power Plant accident. J. Nucl. Sci. Technol. 49, 1116–1133 (2012).

Steinhauser G., Fukushima’s forgotten radionuclides: A review of the understudied radioactive emissions. Environ. Sci. Technol. 48, 4649–4663 (2014). PubMed

Hölgye Z., Křivánek M., On the volatility of ruthenium. J. Radioanal. Chem. 42, 133–141 (1978).

Zok D., Sterba J. H., Steinhauser G., Chemical and radioanalytical investigations of 106Ru-containing air filters from Vienna in fall 2017: Searching for stable element anomalies. J. Radioanal. Nucl. Chem. 318, 415–421 (2018). PubMed PMC

Quélo D., et al. , Validation of the polyphemus platform on the ETEX, Chernobyl and Algeciras cases. Atmos. Environ. 41, 5300–5315 (2007).

IAEA , Status of Measurements of Ru-106 in Europe (IAEA, Vienna, 2017), p. 19.

Rosatom, The comment of The State Atomic Energy Corporation ROSATOM for the Media, 22 November 2017 (2017). https://rosatom.ru/en/press-centre/news/the-comment-of-the-state-atomic-energy-corporation-rosatom-for-the-media/. Accessed 4 June 2018.

Penev I., Angelov H., Arsov T., Georgiev S., Uzunov N., 106Ru aerosol activity observation above southeast Europe in October 2017. Dokl. Bulg. Akad. Nauk. 71, 613–618 (2018).

Jakab D., et al. , Methods, results and dose consequences of 106Ru detection in the environment in Budapest, Hungary. J. Environ. Radioact. 192, 543–550 (2018). PubMed

NTI, Mayak Production Association (2014). https://www.nti.org/learn/facilities/894/. Accessed 12 June 2019.

Jones S., Windscale and Kyshtym: A double anniversary. J. Environ. Radioact. 99, 1–6 (2008). PubMed

Nikipelov B. V., et al. , Accident in the southern Urals on 29 September 1957 (International Atomic Energy Agency Report INFCIRC-368, International Atomic Energy Agency, Vienna, 1989).

IAEA , “Significant incident in nuclear fuel cycle facilities” (IAEA-TECDOC-867, IAEA, Vienna, 1996).

IAEA , The Radiological Accident at the Reprocessing Plant at Tomsk (IAEA, Vienna, 1998).

Husebye E. S., Dainty A. M., Monitoring a Comprehensive Test Ban Treaty (NATO Science Series E, NATO Advanced Study Institute, Springer, Alvor, 1996).

Nord-Cotentin G., Analyse de 2 incidents de rejet atmosphérique de ruthénium 106 en 2001 [in French] (2002). http://www.gep-nucleaire.org/. Accessed 12 June 2019.

Heeb C. M., “Radionuclide releases to the Atmosphere from Hanford operations, 1944-1972” (PNWD-2222 HEDR, Pacific Northwest Laboratories, Richland, WA, 1994).

Padovani S., Mitsios I., Anagnostakis M., Mostacci D., Analysis of the vertical distribution and size fractionation of natural and artificial radionuclides in soils in the vicinity of hot springs. Radiat. Eff. Defects Solids 173, 794–806 (2018).

EGASMRO , Bulletin on the radiation situation in Russia in October 2017 (БЮЛЛЕТЕНЬ о радиационной обстановке на территории России в октябре 2017 г) [in Russian] (2017). http://egasmro.ru/files/documents/ro_bulletins/byulleten_rorf_10_2017.pdf. Accessed 4 March 2019.

EGASMRO , Bulletin on the radiation situation in Russia in October 2017 (БЮЛЛЕТЕНЬ о радиационной обстановке на территории России в сентябре 2017 г) [in Russian] (2017). http://egasmro.ru/files/documents/ro_bulletins/byulleten_rorf_09_2017.pdf. Accessed 4 March 2019.

CRIIRAD , Ruthenium-106 contamination (Contamination par le ruthénium 106) [in French] (2018). http://www.criirad.org/accident-et-pollutions/Note_CRIIRAD_N_18-21_Ru_106_Mayak.pdf. Accessed 4 March 2019.

Pfeiffer F., et al. , Waste specification and quantity structure (Abfallspezifikation und Mengengerüst, GRS-278) [in German] (2011). https://www.grs.de/publication/grs-278-abfallspezifikation-und-mengengeruest-basis-ausstieg-kernenergienutzung. Accessed 4 March 2019.

Cartlidge E., Isotope cloud linked to failed neutrino source. Science 359, 729 (2018). PubMed

Cribier M., et al. , Proposed search for a fourth neutrino with a PBq antineutrino source. Phys. Rev. Lett. 107, 201801 (2011). PubMed

Vivier M., et al. , SOX: Search for short baseline neutrino oscillations with Borexino. J. Phys. Conf. Ser. 718, 062066 (2016).

Irfu, Institut de recherche sur les lois fondamentales de l’Univers (2018). http://irfu.cea.fr/Phocea/Vie_des_labos/Ast/. Accessed 1 March 2018.

Meyer M., “SOX–Towards the detection of sterile neutrinos in Borexino: Beta spectrum modeling, Monte Carlo development and sensitivity studies for the sterile neutrino search in Borexino,” PhD thesis, Universität Hamburg, Germany (2016).

Gerasimov A. S., Kornoukhov V. N., Sald’ikov I. S., Tikhomirov G. V., Production of high specific activity 144Ce for artificial sources of antineutrinos. At. Energy 116, 54–59 (2014).

Compagnie Générale des Matières Nucléaires (COGEMA) , Specifications of Vitrified Residues Produced from Reprocessing at UP-2 or UP-3 La Hague Plants (COGEMA, Second Series, 1986).

Altenmüller K., et al. , The search for sterile neutrinos with SOX-Borexino. Phys. At. Nucl. 79, 1481–1484 (2016).

Lasserre T., et al. , Radioactive source experiments in Borexino. Proceedings of Science 244, 025 (2015).

Mun C., Cantrel L., Madic C., A literature review on ruthenium behavious in nuclear power plant severe accidents (2007). https://hal-irsn.archives-ouvertes.fr/irsn-00177621/document. Accessed 12 June 2019.

Sato S., Endo N., Fukuda K., Morita Y., Optimization for removal of ruthenium from nitric acid solution by volatilizing with electrochemical oxidation. J. Nucl. Sci. Technol. 49, 182–188 (2012).

Maas E. T. Jr, Longo J. M., Confinement of ruthenium oxides volatilized during nuclear fuels reprocessing. Nucl. Technol. 47, 451–456 (1980).

Kim J.-Y., et al. , Template-free synthesis of ruthenium oxide nanotubes for high-performance electrochemical capacitors. ACS Appl. Mater. Interfaces 7, 16686–16693 (2015). PubMed

Hult M., Lutter G., Detection of 106Ru, via the Decay of Its Daughter 106Rh, in Gamma-Ray Spectra (Joint Research Centre, Geel, 2017).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...