Nearly perfect near-infrared luminescence efficiency of Si nanocrystals: A comprehensive quantum yield study employing the Purcell effect
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
31375730
PubMed Central
PMC6677743
DOI
10.1038/s41598-019-47825-x
PII: 10.1038/s41598-019-47825-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Thin layers of silicon nanocrystals (SiNC) in oxide matrix with optimized parameters are fabricated by the plasma-enhanced chemical vapor deposition. These materials with SiNC sizes of about 4.5 nm and the SiO2 barrier thickness of 3 nm reveal external quantum yield (QY) close to 50% which is near to the best chemically synthetized colloidal SiNC. Internal QY is determined using the Purcell effect, i.e. modifying radiative decay rate by the proximity of a high index medium in a special wedge-shape sample. For the first time we performed these experiments at variable temperatures. The complete optical characterization and knowledge of both internal and external QY allow to estimate the spectral distribution of the dark and bright NC populations within the SiNC ensemble. We show that SiNCs emitting at around 1.2-1.3 eV are mostly bright with internal QY reaching 80% at room temperature and being reduced by thermally activated non-radiative processes (below 100 K internal QY approaches 100%). The mechanisms of non-radiative decay are discussed based on their temperature dependence.
See more in PubMed
Dohnalová K, T. Gregorkiewicz T, Kůsová K. Silicon quantum dots: surface matters. J. Phys.: Condens. Matter. 2014;26:173201. PubMed
Yuan Z, et al. Silicon nanocrystals as a photoluminescence down shifter for solar cells. Sol. En. Mater. & Sol. Cells. 2011;95:1224–1227. doi: 10.1016/j.solmat.2010.10.035. DOI
Purcell EM. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 1946;69:681. doi: 10.1103/PhysRev.69.37. DOI
Meldrum, A. Purcell Effect in Silicon Nanocrystals, in Handbook of Silicon Photonics (eds. L. Vivien and L. Pavesi), (Taylor & Francis Group, Boca Raton, 2013).
Zacharias M, et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 2002;80:661–663. doi: 10.1063/1.1433906. DOI
Benisty H, Stanley R, Mayer M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A. 1998;15:1192–1201. doi: 10.1364/JOSAA.15.001192. DOI
Dyakov S, Dai J, Yan M, Qiu M. Thermal radiation dynamics in two parallel plates: The role of near field. Phys. Rev. B. 2014;90:045414. doi: 10.1103/PhysRevB.90.045414. DOI
Valenta J. Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology. Nanoscience Methods. 2014;3:11–27. doi: 10.1080/21642311.2014.884288. DOI
Marinins A, et al. Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Appl. Mater. Interfaces. 2017;9:30267–30272. doi: 10.1021/acsami.7b09265. PubMed DOI
Greben M, Valenta J. Note: On the choice of the appropriate excitation-pulse-length for assessment of slow luminescence decays. Rev. Sci. Instrum. 2017;87:126101. doi: 10.1063/1.4971368. PubMed DOI
Greben M, Khoroshyy P, Sychugov I, Valenta J. Non-exponential decay kinetics: correct assessment and description illustrated by slow luminescence of Si nanostructures. Appl. Spectr. Rev. 2019;54:1517263.
Limpens R, Gregorkiewicz T. Spectroscopic investigations of dark Si nanocrystals in SiO2 and their role in external quantum efficiency quenching. J. Appl. Phys. 2013;114:074304. doi: 10.1063/1.4818580. DOI
Valenta J, et al. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence. Appl. Phys. Lett. 2016;108:023102. doi: 10.1063/1.4939699. DOI
Gutsch S, Hiller D, Laube J, Zacharias M, Kübel C. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM. membranes. Beilstein J. Nanotechnol. 2015;6:964–970. doi: 10.3762/bjnano.6.99. PubMed DOI PMC
Luo J-W, Stradins P, Zunger A. Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy Environ. Sci. 2011;4:2546–2557. doi: 10.1039/c1ee01026c. DOI
Kůsová K, et al. Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain. Appl. Phys. Lett. 2012;101:143101. doi: 10.1063/1.4756696. DOI
Hartel AM, Gutsch S, Hiller D, Zacharias M. Intrinsic nonradiative recombination in ensembles of silicon nanocrystals. Phys. Rev. B. 2013;87:035428. doi: 10.1103/PhysRevB.87.035428. DOI
Sangghaleh, F., Sychugov, I., Bruhn, B. & Linnros J. Non-radiative decay in Si/SiO2quantum dots in transition from dark to bright exciton states, in PhD. thesis, (KTH Royal Institute of Technology, Stockholm, 2015).
Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Photoluminescence performance limits of Si nanocrystals in silicon oxynitride matrices. J. Appl. Phys. 2017;122:144303. doi: 10.1063/1.4999023. DOI
Valenta J, et al. Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt. Mater. 2005;27:1046–1049. doi: 10.1016/j.optmat.2004.08.060. DOI
Kůsova K, et al. Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals. Adv. Mat. Interfaces. 2014;1:1300042. doi: 10.1002/admi.201300042. DOI
Mastronardi ML, et al. Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals. Nano Lett. 2012;12:337–342. doi: 10.1021/nl2036194. PubMed DOI
Yu Y, et al. Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. J. Phys. Chem. C. 2017;121:23240–23248. doi: 10.1021/acs.jpcc.7b08054. DOI
Lee BG, et al. Strained Interface Defects in Silicon Nanocrystals. Adv. Functional Mater. 2012;22:3223–3232. doi: 10.1002/adfm.201200572. DOI
Sychugov I, Valenta J, Linnros J. Probing silicon quantum dots by single-dot techniques. Nanotech. 2017;28:072002. doi: 10.1088/1361-6528/aa542b. PubMed DOI
Pevere F, Sangghaleh F, Bruhn B, Sychugov I, Linnros J. Rapid Trapping as the Origin of Nonradiative Recombination in Semiconductor Nanocrystals. ACS Phot. 2018;5:2990–2996. doi: 10.1021/acsphotonics.8b00581. DOI
Brackmann, U. Lambdachrome Laser Dyes, 3rd Ed., (Lambda Physik AG, Göttingen, 2000).
Greben M, Fucikova A, Valenta J. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions. J. Appl. Phys. 2017;117:144306. doi: 10.1063/1.4917388. DOI
Waldron DL, Preske A, Zawodny JM, Krauss TD, Gupta MC. Lead selenide quantum dot polymer nanocomposites. Nanotech. 2015;26:075705. doi: 10.1088/0957-4484/26/7/075705. PubMed DOI
Laube J, et al. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2014;116:223501. doi: 10.1063/1.4904053. DOI
Valenta J, Greben M. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard. AIP Adv. 2015;5:047131. doi: 10.1063/1.4918970. DOI