• This record comes from PubMed

Nearly perfect near-infrared luminescence efficiency of Si nanocrystals: A comprehensive quantum yield study employing the Purcell effect

. 2019 Aug 02 ; 9 (1) : 11214. [epub] 20190802

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 31375730
PubMed Central PMC6677743
DOI 10.1038/s41598-019-47825-x
PII: 10.1038/s41598-019-47825-x
Knihovny.cz E-resources

Thin layers of silicon nanocrystals (SiNC) in oxide matrix with optimized parameters are fabricated by the plasma-enhanced chemical vapor deposition. These materials with SiNC sizes of about 4.5 nm and the SiO2 barrier thickness of 3 nm reveal external quantum yield (QY) close to 50% which is near to the best chemically synthetized colloidal SiNC. Internal QY is determined using the Purcell effect, i.e. modifying radiative decay rate by the proximity of a high index medium in a special wedge-shape sample. For the first time we performed these experiments at variable temperatures. The complete optical characterization and knowledge of both internal and external QY allow to estimate the spectral distribution of the dark and bright NC populations within the SiNC ensemble. We show that SiNCs emitting at around 1.2-1.3 eV are mostly bright with internal QY reaching 80% at room temperature and being reduced by thermally activated non-radiative processes (below 100 K internal QY approaches 100%). The mechanisms of non-radiative decay are discussed based on their temperature dependence.

See more in PubMed

Dohnalová K, T. Gregorkiewicz T, Kůsová K. Silicon quantum dots: surface matters. J. Phys.: Condens. Matter. 2014;26:173201. PubMed

Yuan Z, et al. Silicon nanocrystals as a photoluminescence down shifter for solar cells. Sol. En. Mater. & Sol. Cells. 2011;95:1224–1227. doi: 10.1016/j.solmat.2010.10.035. DOI

Purcell EM. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 1946;69:681. doi: 10.1103/PhysRev.69.37. DOI

Meldrum, A. Purcell Effect in Silicon Nanocrystals, in Handbook of Silicon Photonics (eds. L. Vivien and L. Pavesi), (Taylor & Francis Group, Boca Raton, 2013).

Zacharias M, et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 2002;80:661–663. doi: 10.1063/1.1433906. DOI

Benisty H, Stanley R, Mayer M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A. 1998;15:1192–1201. doi: 10.1364/JOSAA.15.001192. DOI

Dyakov S, Dai J, Yan M, Qiu M. Thermal radiation dynamics in two parallel plates: The role of near field. Phys. Rev. B. 2014;90:045414. doi: 10.1103/PhysRevB.90.045414. DOI

Valenta J. Determination of absolute quantum yields of luminescing nanomaterials over a broad spectral range: from the integrating sphere theory to the correct methodology. Nanoscience Methods. 2014;3:11–27. doi: 10.1080/21642311.2014.884288. DOI

Marinins A, et al. Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Appl. Mater. Interfaces. 2017;9:30267–30272. doi: 10.1021/acsami.7b09265. PubMed DOI

Greben M, Valenta J. Note: On the choice of the appropriate excitation-pulse-length for assessment of slow luminescence decays. Rev. Sci. Instrum. 2017;87:126101. doi: 10.1063/1.4971368. PubMed DOI

Greben M, Khoroshyy P, Sychugov I, Valenta J. Non-exponential decay kinetics: correct assessment and description illustrated by slow luminescence of Si nanostructures. Appl. Spectr. Rev. 2019;54:1517263.

Limpens R, Gregorkiewicz T. Spectroscopic investigations of dark Si nanocrystals in SiO2 and their role in external quantum efficiency quenching. J. Appl. Phys. 2013;114:074304. doi: 10.1063/1.4818580. DOI

Valenta J, et al. Determination of absorption cross-section of Si nanocrystals by two independent methods based on either absorption or luminescence. Appl. Phys. Lett. 2016;108:023102. doi: 10.1063/1.4939699. DOI

Gutsch S, Hiller D, Laube J, Zacharias M, Kübel C. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM. membranes. Beilstein J. Nanotechnol. 2015;6:964–970. doi: 10.3762/bjnano.6.99. PubMed DOI PMC

Luo J-W, Stradins P, Zunger A. Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy Environ. Sci. 2011;4:2546–2557. doi: 10.1039/c1ee01026c. DOI

Kůsová K, et al. Luminescence of free-standing versus matrix-embedded oxide-passivated silicon nanocrystals: The role of matrix-induced strain. Appl. Phys. Lett. 2012;101:143101. doi: 10.1063/1.4756696. DOI

Hartel AM, Gutsch S, Hiller D, Zacharias M. Intrinsic nonradiative recombination in ensembles of silicon nanocrystals. Phys. Rev. B. 2013;87:035428. doi: 10.1103/PhysRevB.87.035428. DOI

Sangghaleh, F., Sychugov, I., Bruhn, B. & Linnros J. Non-radiative decay in Si/SiO2quantum dots in transition from dark to bright exciton states, in PhD. thesis, (KTH Royal Institute of Technology, Stockholm, 2015).

Valenta J, Greben M, Gutsch S, Hiller D, Zacharias M. Photoluminescence performance limits of Si nanocrystals in silicon oxynitride matrices. J. Appl. Phys. 2017;122:144303. doi: 10.1063/1.4999023. DOI

Valenta J, et al. Colloidal suspensions of silicon nanocrystals: from single nanocrystals to photonic structures. Opt. Mater. 2005;27:1046–1049. doi: 10.1016/j.optmat.2004.08.060. DOI

Kůsova K, et al. Direct Bandgap Silicon: Tensile-Strained Silicon Nanocrystals. Adv. Mat. Interfaces. 2014;1:1300042. doi: 10.1002/admi.201300042. DOI

Mastronardi ML, et al. Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals. Nano Lett. 2012;12:337–342. doi: 10.1021/nl2036194. PubMed DOI

Yu Y, et al. Size-Dependent Photoluminescence Efficiency of Silicon Nanocrystal Quantum Dots. J. Phys. Chem. C. 2017;121:23240–23248. doi: 10.1021/acs.jpcc.7b08054. DOI

Lee BG, et al. Strained Interface Defects in Silicon Nanocrystals. Adv. Functional Mater. 2012;22:3223–3232. doi: 10.1002/adfm.201200572. DOI

Sychugov I, Valenta J, Linnros J. Probing silicon quantum dots by single-dot techniques. Nanotech. 2017;28:072002. doi: 10.1088/1361-6528/aa542b. PubMed DOI

Pevere F, Sangghaleh F, Bruhn B, Sychugov I, Linnros J. Rapid Trapping as the Origin of Nonradiative Recombination in Semiconductor Nanocrystals. ACS Phot. 2018;5:2990–2996. doi: 10.1021/acsphotonics.8b00581. DOI

Brackmann, U. Lambdachrome Laser Dyes, 3rd Ed., (Lambda Physik AG, Göttingen, 2000).

Greben M, Fucikova A, Valenta J. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions. J. Appl. Phys. 2017;117:144306. doi: 10.1063/1.4917388. DOI

Waldron DL, Preske A, Zawodny JM, Krauss TD, Gupta MC. Lead selenide quantum dot polymer nanocomposites. Nanotech. 2015;26:075705. doi: 10.1088/0957-4484/26/7/075705. PubMed DOI

Laube J, et al. Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2014;116:223501. doi: 10.1063/1.4904053. DOI

Valenta J, Greben M. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard. AIP Adv. 2015;5:047131. doi: 10.1063/1.4918970. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...