Metataxonomic analyses reveal differences in aquifer bacterial community as a function of creosote contamination and its potential for contaminant remediation
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31409826
PubMed Central
PMC6692397
DOI
10.1038/s41598-019-47921-y
PII: 10.1038/s41598-019-47921-y
Knihovny.cz E-resources
- MeSH
- Bacteria classification genetics MeSH
- Biodegradation, Environmental MeSH
- Creosote analysis MeSH
- Water Microbiology * MeSH
- Environmental Microbiology MeSH
- Groundwater analysis chemistry microbiology MeSH
- Cluster Analysis MeSH
- DNA Barcoding, Taxonomic * MeSH
- Volatile Organic Compounds MeSH
- Hydrocarbons chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Creosote MeSH
- Volatile Organic Compounds MeSH
- Hydrocarbons MeSH
Metataxonomic approach was used to describe the bacterial community from a creosote-contaminated aquifer and to access the potential for in situ bioremediation of the polycyclic aromatic hydrocarbons (PAHs) by biostimulation. In general, the wells with higher PAH contamination had lower richness and diversity than others, using the Shannon and Simpson indices. By the principal coordinate analysis (PCoA) it was possible to observe the clustering of the bacterial community of most wells in response of the presence of PAH contamination. The significance analysis using edgeR package of the R program showed variation in the abundance of some Operational Taxonomic Units (OTUs) of contaminated wells compared to uncontaminated ones. Taxons enriched in the contaminated wells were correlated positively (p < 0.05) with the hydrocarbons, according to redundancy analysis (RDA). All these enriched taxa have been characterized as PAH degrading agents, such as the genus Comamonas, Geobacter, Hydrocarboniphaga, Anaerolinea and Desulfomonile. Additionally, it was possible to predict, with the PICRUSt program, a greater proportion of pathways and genes related to the degradation of PAHs in the wells with higher contamination levels. We conclude that the contaminants promoted the enrichment of several groups of degrading bacteria in the area, which strengthens the feasibility of applying biostimulation as an aquifer remediation strategy.
See more in PubMed
Semple KT, Reid BJ, Fermor TR. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001;112:269–283. doi: 10.1016/S0269-7491(00)00099-3. PubMed DOI
Moret S, Purcaro G, Conte LS. Polycyclic aromatic hydrocarbon (PAH) content of soil and olives collected in areas contaminated with creosote released from old railway ties. Sci. Total. Environ. 2007;386:1–8. doi: 10.1016/j.scitotenv.2007.07.008. PubMed DOI
Mateus EP, Da Silva MDG, Ribeiro AB, Marriott PJ. Qualitative mass spectrometric analysis of the volatile fraction of creosote-treated railway wood sleepers by using comprehensive two-dimensional gas chromatography. J. Chromatogr. 2008;1178:215–222. doi: 10.1016/j.chroma.2007.11.069. PubMed DOI
Rasmussen G, Fremmersvik G, Olsen RA. Treatment of creosote-contaminated groundwater in a peat/sand permeable barrier—a column study. J. Hazard. Mater. 2002;93:285–306. doi: 10.1016/S0304-3894(02)00056-0. PubMed DOI
Becker L, Matuschek G, Lenoir D, Kettrup A. Leaching behavior of wood treated with creosote. Chemosphere. 2001;42:301–308. doi: 10.1016/S0045-6535(00)00071-0. PubMed DOI
Kulik N, Goi A, Trapido M, Tuhkanen T. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J. Environ. Manage. 2006;78:382–391. doi: 10.1016/j.jenvman.2005.05.005. PubMed DOI
Simarro R, González N, Bautista LF, Molina MC. Assessment of the efficiency of in situ bioremediation technique in a creosote polluted soil: Change in bacterial community. J. Hazard. Mater. 2013;262:158–167. doi: 10.1016/j.jhazmat.2013.08.025. PubMed DOI
Mueller JG, Chapman PJ, Pritchard PH. Creosote-contaminated sites. Their potential for bioremediation. Environ. Sci. Technol. 1989;23:1197–1201.
Arvin E, Flyvbjerg J. Groundwater pollution arising from the disposal of creosote waste. Water. Environ. J. 1992;6:646–651. doi: 10.1111/j.1747-6593.1992.tb00715.x. DOI
Jurys A, et al. Review of creosote pollution toxicity and possibilities of bioremediation. Environ Technol Res. Proceedings of the 9th International Scientific and Practical Conference. 2013;1:34–38.
Choudhary, G., Citra M. J., McDonald A. R. & Quiñone-Rivera, A. Toxicological Profile for Wood Creosote, Coal Tar Creosote, Coal Tar, Coal Tar Pitch, and Coal Tar Pitch Volatiles. Atlanta, Georgia, USA; US Department of Health and Human Services (2002).
Nadim F, Hoag GE, Liu S, Carley RJ, Zack P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J. Pet. Sci. Technol. 2000;26:169–178.
Edwards NT. Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment—a review. J. Environ. Qual. 1983;12:427–441. doi: 10.2134/jeq1983.00472425001200040001x. DOI
Manoli E, Samara C. Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC, Trends Anal. Chem. 1999;18:417–428. doi: 10.1016/S0165-9936(99)00111-9. DOI
Carcione JM, Seriani G, Gei D. Acoustic and electromagnetic properties of soils saturated with salt water and NAPL. J. Appl. Geophy. 2003;52:177–191. doi: 10.1016/S0926-9851(03)00012-0. DOI
Lowe, D. F., Oubre, C. L. & Ward, C. H. Surfactants and cosolvents for NAPL remediation a technology practices manual (Vol. 1). CRC Press (1999).
Wycisk P, Weiss H, Kaschl A, Heidrich S, Sommerwerk K. Groundwater pollution and remediation options for multi-source contaminated aquifers. Toxicol. Lett. 2003;140:343–351. doi: 10.1016/S0378-4274(03)00031-6. PubMed DOI
Margesin R, Schinner F. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. Environ. Microbiol. 2001;6:3127–3133. doi: 10.1128/AEM.67.7.3127-3133.2001. PubMed DOI PMC
Techtmann SM, Hazen TC. Metagenomic applications in environmental monitoring and bioremediation. J. Ind. Microbiol. Biotechnol. 2016;43:1345–1354. doi: 10.1007/s10295-016-1809-8. PubMed DOI
Haritash AK, Kaushik CP. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009;169:1–15. doi: 10.1016/j.jhazmat.2009.03.137. PubMed DOI
Kanaly RA, Harayama S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 2000;182:2059–2067. doi: 10.1128/JB.182.8.2059-2067.2000. PubMed DOI PMC
Bewley RJ, Webb G. In situ bioremediation of groundwater contaminated with phenols, BTEX and PAHs using nitrate as electron acceptor. Land Cont. & Rec. 2001;9:335–347.
Chen M, et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol. Adv. 2015;33:745–755. doi: 10.1016/j.biotechadv.2015.05.003. PubMed DOI
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc. N. Acad Sci. 1998;95:6578–6583. doi: 10.1073/pnas.95.12.6578. PubMed DOI PMC
McMahon S, Parnell J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 2014;87:113–120. doi: 10.1111/1574-6941.12196. PubMed DOI
Ridgway HF, Safarik J, Phipps D, Carl P, Clark D. Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl. Environ. Microbiol. 1990;56:3565–3575. PubMed PMC
Feris KP, Hristova K, Gebreyesus B, Mackay D, Scow KM. A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb. Ecol. 2004;48:589–600. doi: 10.1007/s00248-004-0001-2. PubMed DOI
Zhang S, Wan R, Wang Q, Xie S. Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int. Biodeterior. Biodegrad. 2011;65:1224–1228. doi: 10.1016/j.ibiod.2011.10.002. DOI
Phillips TM, Seech AG, Liu D, Lee H, Trevors JT. Monitoring biodegradation of creosote in soils using radiolabels, toxicity tests, and chemical analysis. Environ. Toxicol. 2000;15:99–106. doi: 10.1002/(SICI)1522-7278(2000)15:2<99::AID-TOX5>3.0.CO;2-D. DOI
Asquith EA, Geary PM, Nolan AL, Evans CA. Comparative Bioremediation of Petroleum Hydrocarbon-Contaminated Soil by Biostimulation, bioaugmentation and surfactant addiction. J. Environ. Sci. Eng. 2012;1:637–365.
Mishra S, Jyot J, Kuhad RC, Lall B. In Situ Bioremediation Potential of an Oily Sludge-Degrading Bacterial Consortium. Curr. Microbiol. 2001;43:328–335. doi: 10.1007/s002840010311. PubMed DOI
Brazilian institute of the environment and renewable natural resources (IBAMA). List of registered remedial products. http://www.ibama.gov.br/phocadownload/qualidadeambiental/remediadores/2018/2018_05_15_remediadores_produtos_registrados_maio2018.pdf. Acesss in: 06/25/2018.
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995;59:143–169. PubMed PMC
Sierra-García IN, et al. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs. PloS one. 2014;9:e90087. doi: 10.1371/journal.pone.0090087. PubMed DOI PMC
Uhlik O, et al. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol. Adv. 2013;31:154–165. doi: 10.1016/j.biotechadv.2012.09.003. PubMed DOI PMC
Hemme CL, et al. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 2010;4:660–672. doi: 10.1038/ismej.2009.154. PubMed DOI
Bowman KS, Moe WM, Rash BA, Bae HS, Rainey FA. Bacterial diversity of an acidic Louisiana groundwater contaminated by dense nonaqueous-phase liquid containing chloroethanes and other solvents. FEMS Microbiol. Ecol. 2006;58:120–133. doi: 10.1111/j.1574-6941.2006.00146.x. PubMed DOI
Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN. High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol. Ecol. 2008;65:526–533. doi: 10.1111/j.1574-6941.2008.00518.x. PubMed DOI
Langille MG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids. Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Bojes HK, Pope PG. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul. Toxicol. Pharm. 2007;47:288–295. doi: 10.1016/j.yrtph.2006.11.007. PubMed DOI
Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends. Biotechnol. 2002;20:243–248. doi: 10.1016/S0167-7799(02)01943-1. PubMed DOI
Yuan M, Tong S, Zhao S, Jia CQ. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J. Hazard. Mater. 2010;181:1115–1120. doi: 10.1016/j.jhazmat.2010.05.130. PubMed DOI
Salih DA, Younis M. GC-MS-estimation and exposure levels of environmental benzene in the BTEX-mixture of air-pollutants in gasoline stations and urban road sides. Int. J. Res. Pharm. Chem. 2013;3:88–94.
Da Silva ML, Alvarez PJ. Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns. J. Environ. Eng. 2002;128:862–867. doi: 10.1061/(ASCE)0733-9372(2002)128:9(862). DOI
Lovley DR. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Ind. Microbiol. Biotechnol. 1997;18:75–81. doi: 10.1038/sj.jim.2900246. DOI
Aburto, A. & Ball, A. S. Bacterial population dynamics and separation of active degraders by stable isotope probing during benzene degradation in a BTEX-impacted aquifer. Rev. Int. Contam. Ambie. 25 (2009).
Clark L. Hydrocarbon pollution control and remediation of groundwater: a brief review. Quarterly Journal of Engineering Geology and Hydrogeology. 1995;28(Supplement 2):S93–S100. doi: 10.1144/GSL.QJEGH.1995.028.S2.01. DOI
Johnston EL, Roberts DA. Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ. Pollut. 2009;157:1745–1752. doi: 10.1016/j.envpol.2009.02.017. PubMed DOI
Thavamani P, Malik S, Beer M, Megharaj M, Naidu R. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J. Environ. Manage. 2012;99:10–17. doi: 10.1016/j.jenvman.2011.12.030. PubMed DOI
Quero, G. M., Cassin, D., Botter, M., Perini, L. & Luna, G. M. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Front. Microbiol. 6 (2015). PubMed PMC
Korlević M, et al. Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Syst. Appl. microbiol. 2015;38:189–197. doi: 10.1016/j.syapm.2015.03.001. PubMed DOI
Muckian L, Grant R, Doyle E, Clipson N. Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere. 2007;68:1535–1541. doi: 10.1016/j.chemosphere.2007.03.029. PubMed DOI
Passarini MR, Sette LD, Rodrigues MV. Improved extraction method to evaluate the degradation of selected PAHs by marine fungi grown in fermentative medium. J. Brazil. Chem. Soc. 2011;22:564–570. doi: 10.1590/S0103-50532011000300022. DOI
Jouanneau Y, Meyer C, Jakoncic J, Stojanoff V, Gaillard J. Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry. 2006;45:12380–12391. doi: 10.1021/bi0611311. PubMed DOI
Van Der Meer JR, De Vos WM, Harayama S, Zehnder AJ. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 1992;56:677–694. PubMed PMC
Atlas RM. Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull. Oxford. 1995;31:178–182. doi: 10.1016/0025-326X(95)00113-2. DOI
Kersters, K. et al. Introduction to the Proteobacteria. In The prokaryotes (pp. 3–37). Springer New York (2006).
Smith RJ, et al. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol. 2012;14:240–253. doi: 10.1111/j.1462-2920.2011.02614.x. PubMed DOI
Yadav TC, Pal RR, Shastri S, Jadeja NB, Kapley A. Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresour. Technol. 2015;188:24–32. doi: 10.1016/j.biortech.2015.01.141. PubMed DOI
Biebl, H. & Pfennig, N. Isolation of members of the family Rhodospirillaceae. In: The prokaryotes. Springer Berlin Heidelberg, 267–273 (1981).
Oren Aharon. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. The Family Rhodocyclaceae; pp. 975–998.
Chen C, et al. Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int. J. Syst. Evol. Micr. 2010;60:2857–2861. doi: 10.1099/ijs.0.018945-0. PubMed DOI
N’guessan AL, et al. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME J. 2010;4:253–266. doi: 10.1038/ismej.2009.115. PubMed DOI
Jeong JY, Park HD, Lee KH, Weon HY, Ka JO. Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing. J. Microbiol. 2011;49:85–594. doi: 10.1007/s12275-011-0530-6. PubMed DOI
Herlemann DP, et al. Metagenomic de novo assembly of an aquatic representative of the Verrucomicrobial class Spartobacteria. MBio. 2013;4:e00569–12. doi: 10.1128/mBio.00569-12. PubMed DOI PMC
Kuever Jan. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. The Family Syntrophaceae; pp. 281–288.
Abt B, et al. Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1 T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema. Stand. Genomic. Sci. 2013;8:88. doi: 10.4056/sigs.3096473. PubMed DOI PMC
Wakelin SA, Nelson PN, Armour JD, Rasiah V, Colloff MJ. Bacterial community structure and denitrifier (nir-gene) abundance in soil water and groundwater beneath agricultural land in tropical North Queensland, Australia. Soil. Res. 2011;49:65–76. doi: 10.1071/SR10055. DOI
Hiraishi A, Khan ST. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl. Microbiol. Biotechnol. 2003;61:103–109. doi: 10.1007/s00253-002-1198-y. PubMed DOI
Mason OU, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 2012;6:715–1727. doi: 10.1038/ismej.2012.59. PubMed DOI PMC
Benedek T, et al. Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution. World J. Microbiol. Biotechnol. 2013;29:1989–2002. doi: 10.1007/s11274-013-1362-9. PubMed DOI
Watanabe K, Teramoto M, Harayama S. Stable bioaugmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ. Microbiol. 2002;4:577–583. doi: 10.1046/j.1462-2920.2002.00342.x. PubMed DOI
Boon N, Goris J, De Vos P, Verstraete W, Top EM. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl. Environ. Microbiol. 2000;66:2906–2913. doi: 10.1128/AEM.66.7.2906-2913.2000. PubMed DOI PMC
Goyal AK, Zylstra GJ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl. Environ. Microbiol. 1996;62:230–236. PubMed PMC
Prakash OM, et al. Geobacter daltonii sp. nov., an Fe(III)-and uranium (VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Intl. J. Syst. Evol. Microbiol. 2010;60:546–553. doi: 10.1099/ijs.0.010843-0. PubMed DOI
Rotaru DEH, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 2011;59:1. doi: 10.1016/B978-0-12-387661-4.00004-5. PubMed DOI
Kunapuli U, et al. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int. J. Syst. Evol. Microbiol. 2010;60:686–695. doi: 10.1099/ijs.0.003525-0. PubMed DOI
Li L, Goel R. Biodegradation of naphthalene, benzene, toluene, ethyl benzene, and xylene in batch and membrane bioreactors. Environ. Eng. Sci. 2012;29:42–51. doi: 10.1089/ees.2010.0362. DOI
Palleroni NJ, Port AM, Chang HK, Zylstra GJ. Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the gamma-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int. J. Syst. Evol. Microbiol. 2004;54:1203–1207. doi: 10.1099/ijs.0.03016-0. PubMed DOI
Sheng, Y., Wang, G., Hao, C., Xie, Q. & Zhang, Q. Microbial Community Structures in Petroleum Contaminated Soils at an Oil Field, Hebei, China. CLEAN–Soil, Air, Water (2016).
DeWeerd KA, Suflita JM. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile tiedjei”. Appl. Environ. Microbiol. 1990;56:2999–3005. PubMed PMC
Mohn WW, Kennedy KJ. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 1992;58:1367–1370. PubMed PMC
Sherry A, et al. Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. Int. Biodeterior. Biodegrad. 2013;81:105–113. doi: 10.1016/j.ibiod.2012.04.009. DOI
Akbari A, Ghoshal S. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site. Environ. Microbiol. 2015;17:4916–4928. doi: 10.1111/1462-2920.12846. PubMed DOI
Peng M, Zi X, Wang Q. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes. Int. J. Env. Res. Pub. He. 2015;12:12002–12015. doi: 10.3390/ijerph121012002. PubMed DOI PMC
Rodriguez-r LM, et al. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J. 2015;9:1928–1940. doi: 10.1038/ismej.2015.5. PubMed DOI PMC
Yang S, et al. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 2016;6:37473. doi: 10.1038/srep37473. PubMed DOI PMC
Moser R, Stahl U. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl. Microbiol. Biotechnol. 2001;55:609–618. doi: 10.1007/s002530000489. PubMed DOI
Zylstra GJ, Kim E, Goyal AK. Comparative molecular analysis of genes for polycyclic aromatic hydrocarbon degradation. Genet. Eng. 1997;19:257–269. doi: 10.1007/978-1-4615-5925-2_14. PubMed DOI
Kane SR, Beller HR, Legler TC, Anderson RT. Biochemical and genetic evidence of benzylsuccinate synthase intoluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation. 2002;13:149–154. doi: 10.1023/A:1020454831407. PubMed DOI
Lu Z. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J. 2012;6:451–460. doi: 10.1038/ismej.2011.91. PubMed DOI PMC
de Voogd NJ, Cleary DF, Polónia AR, Gomes NC. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. 2015;91:fiv019. doi: 10.1093/femsec/fiv019. PubMed DOI
Brown-Peterson NJ, et al. A multiple endpoint analysis of the effects of chronic exposure to sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated microbiomes. Aquat. Toxicol. 2015;165:197–209. doi: 10.1016/j.aquatox.2015.06.001. PubMed DOI
Liu J, et al. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environ. Pollut. 2018;235:171–179. doi: 10.1016/j.envpol.2017.12.008. PubMed DOI
Su Z, et al. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. Mar. Pollut. Bull. 2018;131:481–495. doi: 10.1016/j.marpolbul.2018.04.052. PubMed DOI
Jeanbille, M. et al. Chronic polyaromatic hydrocarbon (PAH) contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments. Front. Microbiol.7 (2016). PubMed PMC
Wang, H., Wang, B., Dong, W. & Hu, X. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci. Rep.6 (2016). PubMed PMC
Hammer, P., Harper, D. A. T. & Ryan, P. D. Paleontological Statistics Software: Package for Education and Data Analysis. Palaeontol. Elect. (2001).
Klindworth Anna, Pruesse Elmar, Schweer Timmy, Peplies Jörg, Quast Christian, Horn Matthias, Glöckner Frank Oliver. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 2012;41(1):e1–e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Pylro VS, et al. Brazilian microbiome project: revealing the unexplored microbial diversity—challenges and prospects. Microb. Ecol. 2014;67:237–241. doi: 10.1007/s00248-013-0302-4. PubMed DOI
Bolger AM, Lohse M, Bjoern U. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Caporaso JG. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Lozupone CA, Knight R. Global patterns in bacterial diversity. P. Natl. A. Sci. 2007;104:11436–11440. doi: 10.1073/pnas.0611525104. PubMed DOI PMC
Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129:271–280. doi: 10.1007/s004420100716. PubMed DOI
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic. Acids. Res. 2012;40:D109–D114. doi: 10.1093/nar/gkr988. PubMed DOI PMC