• This record comes from PubMed

Niche differentiation in rainforest ant communities across three continents

. 2019 Aug ; 9 (15) : 8601-8615. [epub] 20190717

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

A central prediction of niche theory is that biotic communities are structured by niche differentiation arising from competition. To date, there have been numerous studies of niche differentiation in local ant communities, but little attention has been given to the macroecology of niche differentiation, including the extent to which particular biomes show distinctive patterns of niche structure across their global ranges. We investigated patterns of niche differentiation and competition in ant communities in tropical rainforests, using different baits reflecting the natural food spectrum. We examined the extent of temporal and dietary niche differentiation and spatial segregation of ant communities at five rainforest sites in the neotropics, paleotropics, and tropical Australia. Despite high niche overlap, we found significant dietary and temporal niche differentiation in every site. However, there was no spatial segregation among foraging ants at the community level, despite strong competition for preferred food resources. Although sucrose, melezitose, and dead insects attracted most ants, some species preferentially foraged on seeds, living insects, or bird feces. Moreover, most sites harbored more diurnal than nocturnal species. Overall niche differentiation was strongest in the least diverse site, possibly due to its lower number of rare species. Both temporal and dietary differentiation thus had strong effects on the ant assemblages, but their relative importance varied markedly among sites. Our analyses show that patterns of niche differentiation in ant communities are highly idiosyncratic even within a biome, such that a mechanistic understanding of the drivers of niche structure in ant communities remains elusive.

See more in PubMed

Agosti, D. , & Alonso, L. . (2000) The ALL protocol In Agosti D., Majer J., Alonso E. & Schultz T. R. (Eds.), Ants: Standard methods for measuring and monitoring biodiversity (pp. 204–206). Washington, DC: Smithsonian Institution Press.

Albrecht, M. , & Gotelli, N. J. (2001). Spatial and temporal niche partitioning in grassland ants. Oecologia, 126, 134–141. 10.1007/s004420000494 PubMed DOI

Andersen, A. N. (2008). Not enough niches: Non‐equilibrial processes promoting species coexistence in diverse ant communities. Austral Ecology, 33, 211–220. 10.1111/j.1442-9993.2007.01810.x DOI

Andersen, A. N. , Arnan, X. , & Sparks, K. (2013). Limited niche differentiation within remarkable co‐occurrences of congeneric species: Monomorium ants in the Australian seasonal tropics. Austral Ecology, 38, 557–567. 10.1111/aec.12000 DOI

Anjos, D. V. , Caserio, B. , Rezende, F. T. , Ribeiro, S. P. , Del‐Claro, K. , & Fagundes, R. (2017). Extrafloral‐nectaries and interspecific aggressiveness regulate day/night turnover of ant species foraging for nectar on Bionia coriacea . Austral Ecology, 42, 317–328. 10.1111/aec.12446 DOI

Arnan, X. , Gaucherel, C. , & Andersen, A. N. (2011). Dominance and species co‐occurrence in highly diverse ant communities: A test of the interstitial hypothesis and discovery of a three‐tiered competition cascade. Oecologia, 166, 783–794. 10.1007/s00442-011-1919-y PubMed DOI

Baccaro, F. B. , De Souza, J. L. P. , Franklin, E. , Lemes landeiro, V. , & Magnusson, W. E. (2012). Limited effects of dominant ants on assemblage species richness in three Amazon forests. Ecological Entomology, 37, 1–12. 10.1111/j.1365-2311.2011.01326.x DOI

Bernstein, R. A. (1979). Schedules of foraging activity in species of ants. Journal of Animal Ecology, 48, 921–930. 10.2307/4204 DOI

Blaimer, B. B. , Brady, S. G. , Schultz, T. R. , & Fisher, B. L. . (2015). Functional and phylogenetic approaches reveal the evolution of diversity in a hyper diverse biota. Ecography, 38(9), 901–912. 10.1111/ecog.01370. DOI

Blüthgen, N. , & Feldhaar, H. (2010). Food and shelter: How resources influence ant ecology In Lach L., Parr C. L. & Abbott K. L. (Eds.), Ant Ecology (pp. 115–136). New York, NY: Oxford University Press.

Blüthgen, N. , & Fiedler, K. (2004a). Competition for composition: Lessons from nectar‐feeding ant communities. Ecology, 85, 1479–1485. 10.1890/03-0430 DOI

Blüthgen, N. , & Fiedler, K. (2004b). Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community. Journal of Animal Ecology, 73, 155–166. 10.1111/j.1365-2656.2004.00789.x DOI

Blüthgen, N. , Gebauer, G. , & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species‐rich ant community. Oecologia, 137, 426–435. 10.1007/s00442-003-1347-8COMMUNITY PubMed DOI

Bolnick, D. I. (2001). Intraspecific competition favours niche width expansion in Drosophila melanogaster . Nature, 410, 463–466. 10.1038/35068555 PubMed DOI

Bolnick, D. I. , Ingram, T. , Stutz, W. E. , Snowberg, L. K. , Lau, O. L. , & Paull, J. S. (2010). Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proceedings of the Royal Society B‐Biological Sciences, 277, 1789–1797. 10.1098/rspb.2010.0018 PubMed DOI PMC

Brühl, C. A. , Gunsalam, G. , & Linsenmair, K. E. (1998). Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. Journal of Tropical Ecology, 14, 285–297. 10.1017/S0266467498000224 DOI

Carroll, C. , & Janzen, D. (1973). Ecology of foraging by ants. Annual Review of Ecology and Systematics, 4, 231–257. 10.1146/annurev.es.04.110173.001311 DOI

Chase, J. M. , & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago, IL: University of Chicago Press.

Chew, R. M. (1977). Some ecological characteristics of the ants of a desert‐shrub community in Southeastern Arizona. American Midland Naturalist, 98, 33–49. 10.2307/2424713 DOI

Davidson, D. W. (1977). Species diversity and community organization in desert seed‐eating ants. Ecology, 58, 711–724. 10.2307/1936208 DOI

Davidson, D. W. , Cook, S. C. , & Snelling, R. R. (2004). Liquid‐feeding performances of ants (Formicidae): Ecological and evolutionary implications. Oecologia, 139, 255–266. 10.1007/s00442-004-1508-4 PubMed DOI

Development Core Team, R. (2016). R: A language and environment for statistical computing. Vienna Austria: R Found Stat Comput; 0:{ISBN} 3‐900051‐07‐0. 10.1038/sj.hdy.6800737 DOI

Devoto, M. , Bailey, S. , & Memmott, J. (2011). The “night shift”: Nocturnal pollen‐transport networks in a boreal pine forest. Ecological Entomology, 36, 25–35. 10.1111/j.1365-2311.2010.01247.x DOI

Donoso, D. A. (2014). Assembly mechanisms shaping tropical litter ant communities. Ecography (Cop), 37, 490–499. 10.1111/j.1600-0587.2013.00253.x DOI

Ellwood, M. D. F. , Blüthgen, N. , Fayle, T. M. , Foster, W. A. , & Menzel, F. (2016). Competition can lead to unexpected patterns in tropical ant communities. Acta Oecologica, 75, 24–34. 10.1016/j.actao.2016.06.001 DOI

Feldhaar, H. , Gebauer, G. , & Blüthgen, N. (2010) Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecological News, 13, 3–13.

Fichaux, M. , Béchade, B. , Donald, J. , Weyna, A. , Delabie, J. H. C. , Murienne, J. , … Orivel, J. (2019). Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia, 189, 501–513. 10.1007/s00442-019-04341-z PubMed DOI

Floren, A. , & Linsenmair, K. E. (2005). The importance of primary tropical rain forest for species diversity: An investigation using arboreal ants as an example. Ecosystems, 8, 559–567. 10.1007/s10021-002-0272-8 DOI

Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity and Conservation, 7, 1221–1244.

Fowler, D. , Lessard, J. P. , & Sanders, N. J. (2014). Niche filtering rather than partitioning shapes the structure of temperate forest ant communities. Journal of Animal Ecology, 83, 943–952. 10.1111/1365-2656.12188 PubMed DOI

Gordon, D. M. , & Kulig, A. W. (1996). Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecology, 77, 2393–2409. 10.2307/2265741 DOI

Gordon, D. M. , & Wagner, D. (1997). Neighborhood density and reproductive potential in harvester ants. Oecologia, 109, 556–560. 10.1007/s004420050116 PubMed DOI

Gotelli, N. J. , & Ellison, A. M. (2002). Biogeography at a regional scale : Determinants of ant species density in New England bogs and forests. Ecology, 83, 1604–1609. 10.1890/0012-9658(2002)083[1604:BAARSD]2.0.CO;2 DOI

Gotelli, N. J. , & Entsminger, G. L. (2004). EcoSim: Null models software for ecology. Version 7. Jericho, VT: Acquired Intelligence Inc. and Kesey‐Bear.

Harvey, E. S. , Dorman, S. R. , Fitzpatrick, C. , Newman, S. J. , & McLean, D. L. (2012). Response of diurnal and nocturnal coral reef fish to protection from fishing: An assessment using baited remote underwater video. Coral Reefs, 31, 939–950. 10.1007/s00338-012-0955-3 DOI

Hölldobler, B. (1983). Territorial behavior in the green tree ant (Oecophylla smaragdina). Biotropica, 15, 241 10.2307/2387648 DOI

Hölldobler, B. , & Wilson, E. O. (1990). The ants. Cambridge, MA: Harvard University Press.

Houadria, M. , Blüthgen, N. , Salas‐Lopez, A. , Schmitt, M.‐I. , Arndt, J. , Schneider, E. , … Menzel, F. (2016). The relation between circadian asynchrony, functional redundancy, and trophic performance in tropical ant communities. Ecology, 97, 225–235. 10.1890/14-2466.1.The PubMed DOI

Houadria, M. , & Menzel, F. (2017). What determines the importance of a species for ecosystem processes? Insights from tropical ant assemblages. Oecologia, 184, 885–899. 10.1007/s00442-017-3900-x PubMed DOI

Houadria, M. , Salas‐Lopez, A. , Orivel, J. , Blüthgen, N. , & Menzel, F. (2015). Dietary and temporal niche differentiation in tropical ants — Can they explain local ant coexistence? Biotropica, 47, 208–217. 10.1111/btp.12184 DOI

Hutchinson, G. E. (1959). Homage to santa rosalia or Why are there so many kinds of animals? American Naturalist, 93, 145–159.

Junker, R. R. , Höcherl, N. , & Blüthgen, N. (2010). Responses to olfactory signals reflect network structure of flower‐visitor interactions. Journal of Animal Ecology, 79, 818–823. 10.1111/j.1365-2656.2010.01698.x PubMed DOI

Kaspari, M. , & Weiser, M. D. (2000). Ant activity along moisture gradients in a neotropical forest. Biotropica, 32, 703–711. 10.1646/0006-3606(2000)032 DOI

Kay, A. (2004). The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behavioral Ecology, 15, 63–70. 10.1093/beheco/arg106 DOI

Kingston, T. , Jones, G. , Zubaid, A. , & Kunz, T. H. (2000). Resource partitioning in rhinolophoid bats revisited. Oecologia, 124, 332–342. 10.1007/PL00008866 PubMed DOI

Knaden, M. , & Wehner, R. (2005). Coexistence of two large‐sized thermophilic desert ants: The question of niche differentiation in Cataglyphis bicolor and Cataglyphis mauritanica. (Hymenoptera). Myrmecological News, 7, 31–42.

Leibold, M. A. , & McPeek, M. A. (2006). Coexistence of the niche and neutral perspectives in community ecology. Ecological Society of America: Issues in Ecology, 87, 1399–1410. PubMed

Lovette, I. J. , & Hochachka, W. M. (2006). Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. Ecology, 87, 14–28. 10.1890/0012-9658(2006)87[14:SEOPNC]2.0.CO;2 PubMed DOI

Lynch, J. F. , Balinsky, E. C. , & Vail, S. G. (1980). Foraging patterns in three sympatric forest ant species, Prenolepis imparis, Paratrechina melanderi and Aphaenogaster rudis (Hymenoptera: Formicidae). Ecological Entomology, 5, 353–371. 10.1111/j.1365-2311.1980.tb01160.x DOI

Macarthur, R. , & Levins, R. (1967). The Limiting similarity, convergence, and divergence of coexisting species. American Naturalist, 101, 377.

Maret, T. T. , & Collins, J. P. (1997). Ecological origin of morphological diversity: A study of alternative trophic phenotypes in larval salamanders. Evolution (N Y), 51, 898–905. 10.2307/2411164 PubMed DOI

McKane, R. B. , Johnson, L. C. , Shaver, G. R. , Nadelhoffer, K. J. , Rastetter, E. B. , Fry, B. , … Murray, G. (2002). Resource‐based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68–71. 10.1038/415068a PubMed DOI

Menzel, F. , Staab, M. , Chung, A. Y. C. , Gebauer, G. , & Blüthgen, N. (2012). Trophic ecology of parabiotic ants: Do the partners have similar food niches? Austral Ecology, 37, 537–546. 10.1111/j.1442-9993.2011.02290.x DOI

Mezger, D. , & Pfeiffer, M. (2011). Partitioning the impact of abiotic factors and spatial patterns on species richness and community structure of ground ant assemblages in four Bornean rainforests. Ecography (Cop), 34, 39–48. 10.1111/j.1600-0587.2010.06538.x DOI

Mill, A. E. (1984). Predation by the ponerine ant Pachycondyla commutata on termites of the genus Syntermes in Amazonian rain forest. Journal of Natural History, 18, 405–410. 10.1080/00222938400770341 DOI

Nation, J. L. (2002). Insect physiology and biochemistry. Boca Raton, FL: CRC Press.

Ness, J. , Mooney, K. , & Lach, L. (2010). Ants as mutualits In Lach L., Parr C. & Abbott K.(Eds.), Ant ecology (pp. 97–114). Oxford, UK: Oxford University Press .

Parr, C. L. , & Gibb, H. (2010). Competition and the role of dominant ants. Oxford, UK: Oxford University Press.

Parr, C. L. , & Gibb, H. (2012). The discovery‐dominance trade‐off is the exception, rather than the rule. Journal of Animal Ecology, 81, 233–241. 10.1111/j.1365-2656.2011.01899.x PubMed DOI

Philpott, S. , & Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31, 369–377. 10.1111/j.1365-2311.2006.00793.x DOI

Philpott, S. M. , Perfecto, I. , Armbrecht, I. , & Parr, C. L. (2010). Ant diversity and function in disturbed and changing habitats In Lach L., Parr C. & Abbott K.(Eds.), Ant ecology (pp. 137–156). Oxford, UK: Oxford University Press .

Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53–74. 10.1146/annurev.es.04.110173.000413 DOI

Quinlan, R. J. , & Cherrett, J. M. (1979). The role of fungus in the diet of the leaf‐cutting ant Atta cephalotes (L.). Ecological Entomology, 4, 151–160. 10.1111/j.1365-2311.1979.tb00570.x DOI

Sanders, N. J. , Lessard, J. P. , Fitzpatrick, M. C. , & Dunn, R. R. (2007). Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16, 640–649. 10.1111/j.1466-8238.2007.00316.x DOI

Santamaria, C. , Armbrecht, I. , & Lachaud, J. (2009). Nest distribution and food preferences of Ectatomma ruidum (Hymenoptera: Formicidae) in shaded and open cattle pastures of Colombia. Sociobiology, 53, 517–542.

Santini, G. , Tucci, L. , Ottenetti, L. , & Frizzi, F. (2007). Competition trade‐offs in the organisation of a Mediterranean ant assemblage. Ecological Entomology, 32, 319–326. 10.1111/j.1365-2311.2007.00882.x DOI

Stuble, K. L. , Rodriguez‐Cabal, M. A. , McCormick, G. L. , Jurić, I. , Dunn, R. R. , & Sanders, N. J. (2013). Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities. Oecologia, 171, 981–992. 10.1007/s00442-012-2459-9 PubMed DOI

Tanaka, H. O. , Yamane, S. , & Itioka, T. (2010). Within‐tree distribution of nest sites and foraging areas of ants on canopy trees in a tropical rainforest in Borneo. Population Ecology, 52, 147–157. 10.1007/s10144-009-0172-2 DOI

Torres, J. A. (1984). Niches and coexistence of ant communities in Puerto Rico: Repeated patterns. Biotropica, 16(4), 284–295. 10.2307/2387937 DOI

Völkl, W. , Woodring, J. , Fischer, M. , Lorenz, M. W. , & Hoffmann, K. H. (1999). Ant‐aphid mutualisms: The impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483–491. 10.1007/s004420050751 PubMed DOI

See more in PubMed

Dryad
10.5061/dryad.1hj8q5q

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...