Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31415638
PubMed Central
PMC6695186
DOI
10.1371/journal.pone.0221082
PII: PONE-D-19-04940
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- farmy * MeSH
- kůra rostlin * MeSH
- lesy * MeSH
- podnebí * MeSH
- smrk růst a vývoj MeSH
- vysoká zvěř fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of this study was to evaluate (1) effects of bark stripping and climatic factors on radial growth of Picea abies /L./ Karst., (2) production and structural differences between stands established on the forestland and abandoned farmland (afforested farmland-henceforth, farmland), and (3) interaction among the losses caused by ungulate damages, production, diversity, and soil types. Data acquired from four permanent research plots (PRPs) located on the forestland and eight PRPs on the farmland were used. A number of tree- and stand-level models, stand structural indices, tree-rings, and climate characteristics were analysed to evaluate the hypotheses. The results show significantly higher means of DBH, tree height and basal area on the forestland compared to those on the farmland. There was a larger mean standing stem volume on the forestland (466 m3 ha-1) compared to farmland (770 m3 ha-1). Significant difference was observed between the mean DBH and mean stem volume of healthy trees compared to those of the trees with substantial damage (girth damage >1/3 of stem circumference). A greater extent of the girth damage was found on 86% trees on the farmland, while 54% damage on the forestland. About 62% bark-strip damage was further deteriorated by rot infection on the farmland, while on the forestland such an infection was only for 39% trees. The precipitation significantly positively affected the radial growth of trees that were largely affected by ungulate damages on the farmland.
Zobrazit více v PubMed
Vitousek PM. Human Domination of Earth’s Ecosystems. Science (80-). 1997;277: 494–499. 10.1126/science.277.5325.494 DOI
McRae L, Freeman R, Marconi V. Living Planet Report 2016: Risk and Resilience in a New Era. Gland; 2016.
Biasi R, Brunori E, Ferrara C, Salvati L. Towards sustainable rural landscapes? A multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in a mediterranean region. Agrofor Syst. Springer Netherlands; 2017;91: 1199–1217. 10.1007/s10457-016-0006-0 DOI
Lanz B, Dietz S, Swanson T. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecol Econ. Elsevier B.V.; 2018;144: 260–277. 10.1016/j.ecolecon.2017.07.018 DOI
Goldewijk KK. Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem Cycles. 2001;15: 417–433. 10.1029/1999GB001232 DOI
Ellis EC, Ramankutty N. Putting people in the map: Anthropogenic biomes of the world. Front Ecol Environ. 2008;6: 439–447. 10.1890/070062 DOI
Matuszkiewicz JM, Kowalska A, Kozłowska A, Roo-Zielińska E, Solon J. Differences in plant-species composition, richness and community structure in ancient and post-agricultural pine forests in central Poland. For Ecol Manage. 2013;310: 567–576. 10.1016/j.foreco.2013.08.060 DOI
Williams M. Dark ages and dark areas: Global deforestation in the deep past. J Hist Geogr. 2000;26: 28–46. 10.1006/jhge.1999.0189 DOI
Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev. Elsevier Ltd; 2009;28: 3016–3034. 10.1016/j.quascirev.2009.09.028 DOI
Bazil J. Suistainable Forestry and the European Union. Initiatives of the European Commission [Internet]. European Commission Report. Brussels; 2003. Available: http://ec.europa.eu/agriculture/publi/brochures/forestry/full_en.pdf
FAO. Fighting food inflation through sustainable investment—Grain production and export potential in CIS countries. Food and Agriculture Organization of the United Nations. Rome: European Bank of Reconstruction an Development and the FAO; 2008. p. 49.
Forest Europe. State of Europe’s Forests 2011. Status and trends in Sustainable Forest Management in Europe. Ministerial Conference on the Protection of Forests in Europe, Forest Europe, Liaison Unit Oslo. Oslo; 2011. 10.1016/j.beproc.2012.10.011 DOI
Kolecka N, Kozak J, Kaim D, Dobosz M, Ostafin K, Ostapowicz K, et al. Understanding farmland abandonment in the Polish Carpathians. Appl Geogr. 2017;88: 62–72. 10.1016/j.apgeog.2017.09.002 DOI
Forest Europe. State of Europe’s Forests 2015. Summary for Policy Makers [Internet]. 2015. 10.1007/s00424-012-1133-8 DOI
European Commission. Communication from the Commission “A new EU Forest Strategy: for forests and the forest-based sector” COM(2013) 659 final (20.9.2013) [Internet]. Brussels; 2013. Available: http://eur-lex.europa.eu/resource.html?uri=cellar:21b27c38-21fb-11e3-8d1c-01aa75ed71a1.0022.01/DOC_1&format=PDF
Kozak J, Estreguil C, Troll M. Forest cover changes in the northern carpathians in the 20th century: A slow transition. J Land Use Sci. 2007;2: 127–146. 10.1080/17474230701218244 DOI
Špulak O, Kacálek D. History of non-forest land afforestation in the Czech republic [Historie zalesňování nelesních půd na území České republiky]. Zprávy Lesn výzkumu. 2011;2011: 49–57. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84856276060&partnerID=40&md5=8f8a0a7c529dc15dd09d9b98ea4856c8
Fuchs R, Verburg PH, Clevers JGPW, Herold M. The potential of old maps and encyclopaedias for reconstructing historic European land cover/use change. Appl Geogr. Elsevier Ltd; 2015;59: 43–55. 10.1016/j.apgeog.2015.02.013 DOI
Houet T, Vacquié L, Sheeren D. Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees—France): Insights from model parameterization and experiments. J Mt Sci. 2015;12: 1095–1112. 10.1007/s11629-014-3404-7 DOI
Houet T, Grémont M, Vacquié L, Forget Y, Marriotti A, Puissant A, et al. Downscaling scenarios of future land use and land cover changes using a participatory approach: an application to mountain risk assessment in the Pyrenees (France). Reg Environ Chang. Regional Environmental Change; 2017;17: 2293–2307. 10.1007/s10113-017-1171-z DOI
Jarský V, Pulkrab K. Analysis of EU support for managed succession of agricultural land in the Czech Republic. Land use policy. 2013;35: 237–246. 10.1016/j.landusepol.2013.05.020 DOI
Podrázský V, Štěpáník R. Vývoj půd na zalesněných zemědělských plochách–oblast LS Český Rudolec. Zprávy Lesn výzkumu. 2002;47: 53–56.
Hatlapatková L, Podrázský V, Vacek S. Výzkum v lesních porostech na bývalých zemědělských půdách v oblasti Deštného a Neratova v PLO 25 –Orlické hory In: Neuhoferová P, editor. Zalesňování zemědělských půd, výzva pro lesnický sektor Kostelec nad Černými lesy 17 1 2006 Praha, ČZU. Kostelec nad Černými lesy; 2006. pp. 185–192.
Wall A, Heiskanen J. Soil-water content and air-filled porosity affect height growth of Scots pine in afforested arable land in Finland. For Ecol Manage. 2009;257: 1751–1756. 10.1016/j.foreco.2009.01.029 DOI
Johansson T. Total stem and merchantable volume equations of Norway spruce (Picea abies (L.) Karst.) Growing on former farmland in Sweden. Forests. 2014;5: 2037–2049. 10.3390/f5082037 DOI
Vacek Z, Vacek S, Podrázský V, Král J, Bulušek D, Putalová T, et al. Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology. 2016;75: 31–44. 10.12657/denbio.075.004 DOI
Hytönen J, Jylhä P, Little K. Positive effects of wood ash fertilization and weed control on the growth of Scots pine on former peat-based agricultural land—A 21-year study. Silva Fenn. 2017;51: 1–18. 10.14214/sf.1734 DOI
Kacálek D, Dušek D, Novák J, Slodičák M, Bartoš J, Černohous V, et al. Former agriculture impacts on properties of Norway spruce forest floor and soil. For Syst. 2011;20: 437–443. 10.5424/fs/20112003-11042 DOI
Kotecký V. Contribution of afforestation subsidies policy to climate change adaptation in the Czech Republic. Land use policy. 2015;47: 112–120. 10.1016/j.landusepol.2015.03.014 DOI
Aosaar J, Mander Ü, Varik M, Becker H, Morozov G, Maddison M, et al. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula roth.) stand in Estonia. Silva Fenn. 2016;50: 1–19. 10.14214/sf.1628 DOI
Spiecker H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J Environ Manage. 2003;67: 55–65. 10.1016/S0301-4797(02)00188-3 PubMed DOI
Ministry of Agriculture. Zpráva o stavu lesa a lesního hospodářství české republiky v roce 2017 –Report of forest management in Czech Republic in 2017. Prague; 2017.
Vacek S, Moucha P., Bílek L, Mikeska M. Péče o lesní ekosystémy v chráněných územích ČR. Praha: Ministerstvo životního prostředí; 2012.
Hytönen J, Jylhä P. Fifteen-year response of weed control intensity and seedling type on Norway spruce survival and growth on arable land. Silva Fenn. 2008;42: 355–368. 10.14214/sf.242 DOI
Irbe I, Sable I, Noldt G, Grinfelds U, Jansons A, Treimanis A, et al. Wood and Tracheid Properties of Norway Spruce (Picea abies [L] Karst.) Clones Grown on Former Agricultural Land in Latvia. Balt For. 2015;21: 114–123.
Wysocka-Fijorek E, Kalisewski A. Causes and directions of reclassification of non-forest lands into forest lands according to the survey results. Sylwan. 2017;161: 460–466.
Vacek S, Vacek Z, Kalousková I, Cukor J, Bílek L, Moser WK, et al. Sycamore maple (Acer pseudoplatanus L.) stands on former agricultural land in the Sudetes–evaluation of ecological value and production potential. Dendrobiology. 2017;79: 61–76. 10.12657/denbio.079.006 DOI
Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgård B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For Ecol Manage. 2004;195: 373–384. 10.1016/j.foreco.2004.02.036 DOI
Podrázský V, Procházka J, Remeš J. Produkce a vývoj půdního prostředí porostů na bývalých zemědělských půdách v oblasti Českomoravské vrchoviny. Zpravy Lesn Vyzk. 2011;56: 27–35.
Cukor J, Baláš M, Kupka I, Tužinský M. The condition of forest stands on afforested agricultural land in the Orlické hory Mts. J For Sci. 2017;63: 1–8.
Allikmäe E, Laarmann D, Korjus H. Vitality assessment of visually healthy trees in Estonia. Forests. 2017;8 10.3390/f8070223 DOI
Sierota Z. Heterobasidion root rot in forests on former agricultural lands in Poland: Scale of threat and prevention. Sci Res Essays. 2013;8: 2298–2305. 10.5897/SRE2013.5724 DOI
Gill RMA. A review of damage by mammals in north temperate forest 3. Forestry. 1992;65: 363–388.
Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 21st century climate change in the European Alps-A review. Sci Total Environ. The Authors; 2014;493: 1138–1151. 10.1016/j.scitotenv.2013.07.050 PubMed DOI
Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage. Elsevier Ltd; 2014;146: 69–83. 10.1016/j.jenvman.2014.07.030 PubMed DOI
Bosela M, Štefančík I, Petráš R, Vacek S. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric For Meteorol. 2016;222: 21–31. 10.1016/j.agrformet.2016.03.005 DOI
Bílá K. Are bark beetles responsible for droughts in the Šumava Mts.? A mini-review. Eur J Environ Sci. 2016;6: 108–113.
Pretzsch H, Schütze G, Biber P. Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For Ecosyst. Forest Ecosystems; 2018;5 10.1186/s40663-018-0139-x DOI
Pretzsch H., Schütze G., Uhl E. Resistance of European tree species to drought stress in mixed. 2012. pp. 483–495. PubMed
Ding H, Pretzsch H, Schütze G, Rötzer T. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol. 2017;19: 709–719. 10.1111/plb.12596 PubMed DOI
Půlpán J. Vliv hospodaření na vznik hnilob. Zprávy Lesn výzkumu. 2001;46: 135–136.
Welch D, Scott D, Staines BW. Bark stripping damage by red deer in a Sitka spruce forest in western Scotland III. Trends in wound condition. Forestry. 1997;70: 113–120. 10.1093/forestry/70.2.113-a DOI
Vospernik S. Probability of bark stripping damage by red deer (Cervus elaphus) in Austria. Silva Fenn. 2006;40: 589–601. 10.14214/sf.316 DOI
Čermák P, Strejček M. Stem decay by Stereum sanguinolentum after red deer damage in the Českomoravská vrchovina Highlands. J For Sci. 2007;53: 567–572.
Hagen R, Heurich M, Kröschel M, Herdtfelder M. Synchrony in hunting bags: Reaction on climatic and human induced changes? Sci Total Environ. Elsevier B.V.; 2014;468–469: 140–146. 10.1016/j.scitotenv.2013.08.022 PubMed DOI
Thulin CG, Malmsten J, Ericsson G. Opportunities and challenges with growing wildlife populations and zoonotic diseases in Sweden. Eur J Wildl Res. 2015;61: 649–656. 10.1007/s10344-015-0945-1 DOI
Baltzinger M, Mårell A, Archaux F, Pérot T, Leterme F, Deconchat M. Overabundant ungulates in French Sologne? Increasing red deer and wild boar pressure may not threaten woodland birds in mature forest stands. Basic Appl Ecol. Elsevier GmbH; 2016;17: 552–563. 10.1016/j.baae.2016.04.005 DOI
Månsson J, Jarnemo A. Bark-stripping on Norway spruce by red deer in Sweden: level of damage and relation to tree characteristics. Scand J For Res. 2013;28: 117–125. 10.1080/02827581.2012.701323 DOI
Verheyden H, Ballon P, Bernard V, Saint-andrieux C. Variations in bark-stripping by red deer Cervus elaphus across Europe. Mamm Rev. 2006;36: 217–234. 10.1111/j.1365-2907.2006.00085.x DOI
Vlad R, Sidor CG. Research for the estimate of rotten stem wood volume in Norway spruce stand damaged by deer species. Rev Pădurilor. 2013;128: 27–32.
Vlad R. Assessment of the wood volume with stem decay in Norway spruce stands damaged by red deer. Proceedings of the Biennial International Symposium Forest and sustainable development. Brasov: Transilvania University Press; 2014. pp. 381–386.
Malík V, Karnet P. Game damage to forest trees. J For Sci. 2007;53: 406–412.
Čermák P, Mrkva R, Horsák P, Špiřík M, Beranová P, Orálková J, et al. Impact of ungulate browsing on forest dynamics. Folia For Bohem. 2011;20: 80.
Dvořák Z, Šafránek M, Honzová V, Vala J. Sortimentace a zpeněžení smrkového dříví v závislosti na výskytu škod ohryzem a loupáním jelení zvěří. [Sorting and conversion of spruce timber into money depending on the occurrence of damage caused by browsing and peeling]. Zprávy Lesn výzkumu. 2016;61: 298–304.
Köppen W. Das Geographische System der Klimate. Handbuch der Klimatologie. Berlin: Gebrüder Borntraeger; 1936.
Quitt E. Klimatické oblasti Československa [Climatic regions of Czechoslovakia]. Prague: Academia; 1971.
Ahlén I. Studies on the red deer, Cervus elaphus L., in Scandinavia. Stud red deer, Cervus elaphus L, Scand. 1965;3: 89–176.
Mikeska M. Oblastní plán rozvoje lesů PLO—25 Orlické hory. 1999.
Vacek Z. Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Cent Eur For J. 2017;63: 23–34. 10.1515/forj-2017-0006 DOI
Cadenasso AML, Pickett STA. Linking Forest Edge Structure to Edge Function: Mediation of Herbivore Damage. J Ecol. 2000;88: 31–44.
Deer R, Kiffner C, Rößiger E, Trisl O, Schulz R, Rühe F. Probability of Recent Bark Stripping a Low Mountain Range in Germany–A Preliminary Analysis. Silva Fenn. 2008;42: 125–134.
Haglöf Sweden AB. Vertex Laser II, Operator´s Manual VL402 v 1.1. Långsele; 2010.
McIntyre EB. Barkstripping–a natural phenomenon. Scottish For. 1972;26: 43–50.
Naslund M. Skogsförsöksanstaltens gallringsförsök i tallskog. Medd. Statens Skogsförsöksanstalt. Swedish Institute of Experimental Forestry; 1937.
Petráš R, Pajtík J. Sústava česko-slovenských objemových tabuliek drevín. For J—Lesn časopis. 1991;37: 49–56.
Fabrika M. Growth simulator SIBYLA and the possibilities of its applications in forest management. Lesn časopis For J. 2003;49.
Pretzsch H. Wissen nutzbar machen für das Management von Waldökosystemen. Allg Forstzeitschrift/Der Wald. 2006;1158–1159.
Füldner K. Strukturbeschreibung in Mischbeständen [Structure description of mixed stands]. Forstarchiv. 1995;66: 235–606.
Books P. C.E. Shannon: A Mathematical Theory of Communications. Bell Syst Tech J. 1948;27: 1119–1120.
Pielou EC. Ecological diversity. Most. New York: Wiley; 1975. 10.1016/0006-3207(92)90776-J DOI
Menhinick EF. A Comparison of Some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology. 1964;45: 859–861. 10.2307/1934933 DOI
Jaehne S, Dohrenbusch A. Ein Verfahren zur beurteilung der bestandesdiversitiit. Eur J For Res. 1997;116: 333–345. 10.1007/BF02766909 DOI
Pielou EC. The Use of Point-to-Plant Distances in the Study of the Pattern of Plant Populations. Source J Ecol. 1959;47: 607–613. 10.2307/2257293 DOI
Mountford MD. On E. C. Pielou᾿s index of non-randomes. J Ecol. 1961;49: 271–275.
Clark PJ, Evans FC. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology. 1954;35: 445–453. 10.2307/1931034 DOI
Siegel S, Castellan NJ Jr. Nonparametric statistics for the behavioral sciences, 2nd ed Nonparametric statistics for the behavioral sciences, 2nd ed. New York, NY, England: Mcgraw-Hill Book Company; 1988.
Knibbe B. Personal Analysis System for Treering Research—PAST 4.2. Sciem. Vienna: SCIEM; 2007. pp. 1–161.
Yamaguchi DK. A simple method for cross-dating increment cores from living trees. Can J For Res. 1991;21: 414–416. 10.1139/x91-053 DOI
Grissino-Mayer HD, Fritts HC. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. The Holocene. Tuscon: Laboratory of Tree-Ring Research, University of Arizona, Tuscon, USA; 1997;7: 235–238. 10.1177/095968369700700212 DOI
Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia. 1990;8: 9–38.
Biondi F, Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci. 2004;30: 303–311. 10.1016/j.cageo.2003.11.004 DOI
R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria; 2018.
Falkengren-Grerup U, Brink DJ Ten, Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage. 2006;225: 74–81. 10.1016/j.foreco.2005.12.027 DOI
Armolaitis K, Aleinikoviene J, Baniuniene A, Lubyte J, Zekaite V. Carbon sequestration and nitrogen status in Arenosols following afforestation or following abandonment of arable land. Balt For. 2007;13: 169–178. 10.1177/109019818701400208 DOI
von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T, Meyer H. Long-term effects of historical heathland farming on soil properties of forest ecosystems. For Ecol Manage. 2008;255: 1984–1993. 10.1016/j.foreco.2007.12.021 DOI
Valtinat K, Bruun HH, Brunet J. Restoration of oak forest: Effects of former arable land use on soil chemistry and herb layer vegetation. Scand J For Res. 2008;23: 513–521. 10.1080/02827580802545572 DOI
Alriksson A, Olsson MT. Soil changes in different age classes of Norway spruce (Picea abies (L.) Karst.) on afforested farmland. Plant Soil. 1995;168–169: 103–110. 10.1007/BF00029319 DOI
Wall A, Hytönen J. Soil fertility of afforested arable land compared to continuously forested sites. Plant Soil. 2005;275: 247–260. 10.1007/s11104-005-1869-4 DOI
Vacek S, Simon J. Zakládání a stabilizace lesních porostů na bývalých zemědělských a degradovaných půdách. Kostelec nad Černými lesy: Lesnická práce; 2009.
Podrázský V. Tvorba povrchového humusu při zalesňování zemědělskcých ploch a po buldozerové přípravě v Krušných horách. Zpravy Lesn Vyzk—Reports For Res. 2008;53: 258–263.
Kacálek D, Novák J, Dušek D, Bartoš J, Černohous V. How does legacy of agriculture play role in formation of afforested soil properties? J For Sci. 2009;55: 9–14.
Vopravil J, Podrázský V, Khel T, Holubík O, Vacek S. Effect of afforestation of agricultural soils and tree species composition on soil physical characteristics changes. Ekol Bratislava. 2014;33: 67–80. 10.2478/eko-2014-0008 DOI
Černý A. Škody způsobené na smrku ztepilém ohryzem a loupáním jelení a mufloní zvěří a následnými hnilobami na území ČR. Škody Zvěří a Jejich Řešení. MZLU v Brně; 1995. pp. 99–101.
Dušek D, Slodičák M. Structure and static stability of stands under different regimes of thinning on former agricultural land. Zprávy Lesn výzkumu. 2009; 12–16. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651544022&partnerID=40&md5=877cc72c596e184deece03d3b2c65098
Kort J, Collins M, Ditsch D. A review of soil erosion potential associated with biomass crops. Biomass and Bioenergy. 1998;14: 351–359. 10.1016/S0961-9534(97)10071-X DOI
Vacek S, Lepš J. Changes in the horizontal structure in a spruce forest over a 9-year period of pollutant exposure in the Krkonoše mountains, Czechoslovakia. For Ecol Manage. 1987;22: 291–295. 10.1016/0378-1127(87)90113-7 DOI
Vacek S, Matějka K. State and development of phytocenoses on research plots in the Krkonoše Mts. forest stands. J For Sci. 2010;56: 505–517.
Vacek Z, Vacek S, Bílek L, Král J, Remeš J, Bulušek D, et al. Ungulate impact on natural regeneration in spruce-beech-fir stands in Černý důl nature reserve in the Orlické hory Mountains, case study from central sudetes. Forests. 2014;5: 2929–2946. 10.3390/f5112929 DOI
Králíček I, Vacek Z, Vacek S, Remeš J, Bulušek D, Král J, et al. Dynamics and structure of mountain autochthonous spruce-beech forests: Impact of hilltop phenomenon, air pollutants and climate. Dendrobiology. 2017;77: 119–137. 10.12657/denbio.077.010 DOI
Coulson T, Albon S, Guinness F, Pemberton J, Clutton-Brock T. Population substructure, local density, and calf winter survival in Red deer (Cervus elaphus). Ecology. 1997;78: 852–863. 10.2307/2266064 DOI
Plante M, Lowell K, Potvin F, Boots B, Fortin M-J. Studying deer habitat on Anticosti Island, Québec: relating animal occurrences and forest map information. Ecol Modell. 2004;174: 387–399. 10.1016/j.ecolmodel.2003.09.035 DOI
Havránek F, Cukor J, Bukovjan K. Modelování vlivu zvěře a mysliveckého managementu na prostředí na příkladu fragmentované krajiny Plaské pahorkatiny—průběžná zpráva. Praha; 2018.
Gill RMA. A Review of Damage by Mammals in North Temperate Forests: 1. Deer. Forestry. 1992;65: 145–169. 10.1093/forestry/65.2.145 DOI
Čermák P, Jankovský L, Glogar J. Loupání a následné hniloby. Lesn práce. Kostelec nad Černými lesy: Lesnická práce; 2003;12/03: 24–25.
Čermák P, Jankovský L, Lička D, Beránek J, Glogar J. Damage to spruce stands by deer barking and subsequent rots in Forest Range Proklest, the Křtiny Training Forest Enterprise “Masaryk Forest” (the Drahany Upland). Acta Univ Agric Silvic Mendelianae Brun. 2004;52: 165–174. 10.11118/actaun200452020165 DOI
Vasiliauskas R, Stenlid J, Johansson M. Fungi in bark peeling wounds of Picea abies in central Sweden. Eur J For Pathol. 1996;26: 285–296.
Korpela I, Tuomola T, Tokola T, Dahlin B. Appraisal of seedling stand vegetation with airborne imagery and discrete-return LiDAR—an exploratory analysis. Silva Fenn. 2008;42: 753–772. 10.14214/sf DOI
Welch D, Staines BW, Scott D, Catt DC. Bark-stripping damage by red deer in Sitka spruce in Western Scotland. II. Qound size and position. Forestry. 1988;61: 245–254.
Scott D. Impact of red deer on a Scots pine plantation after removal of deer fencing. Scottish For. 1998;52: 8–13.
Roll-Hansen F, Roll-Hansen H. Microorganisms which invade Picea abies in seasonal stem wounds. For Pathol. 1980;10: 396–410. 10.1111/j.1439-0329.1980.tb00057.x DOI
El Atta HA, Hayes AJ. Decay in Norway spruce caused by Stereum sanguinolentum Alb. and Schw. ex Fr. developing from extraction wounds. Forestry. 1987;60: 101–111. 10.1093/forestry/60.1.101 DOI
Kessl J, Fanta B, Hanuš S, Melichar J, Řibal M. Ochrana proti škodám zvěří. Prague: SZN, Czech Republic; 1957.
Henžlík V. Současný stav, rozsah a vývoj škod zvěří. Škody Zvěří a Jejich Řešení. MZLU Brno; 1995. pp. 25–34.
Simon J, Kolář C. Economic evaluation of bark stripping by red deer on the basis of analysis on a time growth series of spruce stands in the Hrubý Jeseník Mts. J For Sci. 2001;47: 402–409.
Čermák P, Malík J. rot caused by Stereum sanguinolentum and its spread through the Norway spruce stem in the LHC Obrova Noha management-plan area. 2005; 2–7.
Rönnberg J, Berglund M, Johansson U, Cleary M. Incidence of Heterobasidion spp. following different thinning regimes in Norway spruce in southern Sweden. For Ecol Manage. 2013;289: 409–415. 10.1016/j.foreco.2012.10.013 DOI
Smirnov KA. Effect of elk damage to spruce bark on increment and species succession in the southern taiga. Lesovedenie. 1981;4: 56–65.
Domanski S. Próba fytopatologicznej oceny swierkow ospalowanych przez zwierzyne w Karkonszach. Folia For pollonica Ser A. 1996;12: 157–174.
Eidmann FE. Wertminderung von Fichtenbestanden durch den schälschäden des Rotwildes. Forstarchiv. 1952;23: 65–69.
Eckmüllner O. Barking and logging damage in commercial forest and high forest. Results of the Austrian Forest Inventory for. Austrian J For Sci. 1985;102: 190–214.
Koltzenburg C. Schutzwirkung durch mechanischbiologischen Schalschutz in Fichtenbestanden. Forst-Holzwirt. 1985;40: 471–475.
Gill R, Webber J, Peace A, Lodge AH. The Economic Implications of Deer Damage. Wrecclesham; 2000.
Fanta B. Poškození lesních porostů v ČSR loupáním zejména jelení a mufloní zvěří. Hniloby lesních dřevin a ochrana proti nim. LF VŠZ Brno; 1983. pp. 55–63.
Vala Z, Ernst M. Red deer density in the air-polluted area of forest ecosystems in the Krušné hory Mts.—Klášterec nad Ohří Forest District. J For Sci. 2011;57: 59–63.
Cukor J, Havránek F, Rohla J, Bukovjan K. Stanovení početnosti jelení zvěře v západní části Krušných hor. Zprávy Lesn výzkumu. 2017;2017: 288–295.
UHUL. Inventarizace škod zvěří na lesním hospodářství České republiky. In: Forest Management Institute; [Internet]. 2017. Available: http://www.uhul.cz/mapy-adata/362-portal-myslivosti
Reimoser F. Steering the impacts of ungulates on temperate forests. J Nat Conserv. 2003;10: 243–252. 10.1078/1617-1381-00024 DOI
Heinze E, Boch S, Fischer M, Hessenmöller D, Klenk B, Müller J, et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For Ecol Manage. Elsevier B.V.; 2011;261: 288–296. 10.1016/j.foreco.2010.10.022 DOI
Jarnemo A, Minderman J, Bunnefeld N, Zidar J, Mansson J. Managing landscapes for multiple objectives: Alternative forage can reduce the conflict between deer and forestry. Ecosphere. 2014;5 10.1890/ES14-00106.1 DOI
Meyer FD, Brk̈er OU. Climate response in dominant and suppressed spruce trees, picea abies (L.) karst., on a subalpine and lower montane site in switzerland. Ecoscience. 2001;8: 105–114. 10.1080/11956860.2001.11682636 DOI
Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, et al. Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. For Ecol Manage. 2002;171: 243–259. 10.1016/S0378-1127(01)00786-1 DOI
Král J, Vacek S, Vacek Z, Putalová T, Bulušek D, Štefančík I. Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. For J. 2015;61: 175–187. 10.1515/forj-2015-0026 DOI
Mäkinen H, Nöjd P, Mielikäinen K. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees—Struct Funct. 2001;15: 177–185. 10.1007/s004680100089 DOI
Andreassen K, Solberg S, Tveito OE, Lystad SL. Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For Ecol Manage. 2006;222: 211–221. 10.1016/j.foreco.2005.10.029 DOI
Hauck M, Zimmermann J, Jacob M, Dulamsuren C, Bade C, Ahrends B, et al. Rapid recovery of stem increment in Norway spruce at reduced SO 2 levels in the Harz Mountains, Germany. Environ Pollut. Elsevier Ltd; 2012;164: 132–141. 10.1016/j.envpol.2012.01.026 PubMed DOI
Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, et al. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric For Meteorol. 2018;250–251: 47–63. 10.1016/j.agrformet.2017.11.036 DOI
Holuša J, Lubojacký J, Čurn V, Tonka T, Lukášová K, Horák J. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. For Ecol Manage. 2018;427: 434–445. 10.1016/j.foreco.2018.01.031 DOI