• This record comes from PubMed

Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breeds

. 2019 Dec 01 ; 98 (12) : 6931-6941.

Language English Country Great Britain, England Media print

Document type Journal Article

Links

PubMed 31420680
PubMed Central PMC8913977
DOI 10.3382/ps/pez472
PII: S0032-5791(19)58004-X
Knihovny.cz E-resources

Eggshell colour, quality, and biosafety of table eggs are of significant commercial interest. To date, there have been few studies investigating the relationship between eggshell pigmentation and internal egg quality in commercially bred birds. Moreover, the genetic basis and mechanisms behind the effects of extrinsic factors on deposition of antimicrobial compounds in egg white and eggshell pigments are not fully understood. In the present study, we evaluate the effect of chicken breed identity, eggshell pigmentation and the role of extrinsic factors (year and breeder identity) on variability in the concentrations of 2 major egg white antimicrobial proteins (AMPs), lysozyme (LSM), and ovotransferrin (OVOTR), across 23 traditional chicken breeds. We found that chicken breed identity and eggshell pigmentation explained most variability in the concentration of egg white LSM and OVOTR. Year and breeder identity were also significant predictors of egg white LSM and OVOTR variability, and showed selective effects on the deposition of both AMPs in egg white. We also documented a positive correlation between concentration of egg white LSM and eggshell cuticle protoporphyrin in tinted and dark brown eggs, but not in brown, white, and blue eggs. We assume that a combination of both intrinsic genetic and hormonally regulated extrinsic factors is responsible for this relationship and for the variability in egg white AMPs. In this study, we demonstrate the existence of a relationship between eggshell pigmentation and egg white AMPs content in the eggs of traditional chicken breeds that may advertise the egg's antimicrobial potential and biosafety. These findings provide novel insights into the relationship between eggshell pigmentation and egg internal quality and may stimulate the recovery and exploitation of traditional chicken breeds for egg production, where the demands for egg quality and biosafety, in conjunction with animal welfare, are a priority.

See more in PubMed

Ahmed B., De Boeck C., Dumont A., Cox E., De Reu K., Vanrompay D. First experimental evidence for the transmission of Chlamydia psittaci in poultry through eggshell penetration. Transbound. Emerg. Dis. 2017;64:167–170. PubMed

Bai D.P., Lin X.Y., Wu Y., Zhou S.Y., Huang Z.B., Huang Y.F., Li A., Huang X.H. Isolation of blue-green eggshell pigmentation-related genes from Putian duck through RNA-seq. BMC Genomics. 2019;20:66. doi: 10.1186/s12864-019-5436-4. PubMed DOI PMC

Bain M.M., McDade K., Burchmore R., Law A., Wilson P.W., Schmutz M., Preisinger R., Dunn I.C. Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Anim. Genet. 2013;44:661–668. PubMed

Bain M.M., Zheng J.X., Zigler M., Whenham N., Quinlan-Pluck F., Jones A.C., Roberts M., Icken W., Olori V.E., Dunn I.C. Cuticle deposition improves the biosecurity of eggs through the laying cycle and can be measured on hatching eggs without compromising embryonic development. Poult. Sci. 2019;98:1775–1784. PubMed

Baron F., Jan S. In: Improving the Safety and Quality of Eggs and Egg Products. Nys Y., Bain M., Immerseel F.V., editors. Woodhead Publishing Ltd; Cambridge, UK: 2011. Egg and egg product microbiology; pp. 330–350.

Baron F., Jan S., Gonnet F., Pasco M., Jardin J., Giudici B., Gautier M., Guerin-Dubiard C., Nau F. Ovotransferrin plays a major role in the strong bactericidal effect of egg white against the Bacillus cereus group. J. Food Protect. 2014;77:955–962. PubMed

Bates D., Machler M., Bolker B.M., Walker S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48.

Bedrani L., Helloin E., Guyot N., Nys Y. Systemic administration of lipopolysaccharide in laying hens stimulates antimicrobial properties of egg white against Staphylococcus aureus. Vet, Immunol. Immunop. 2013;152:225–236. PubMed

Bedrani L., Helloin E., Guyot N., Rehault-Godbert S., Nys Y. Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities. BMC Microbiol. 2013;13:128. doi: 10.1186/1471-2180-13-128. PubMed DOI PMC

Bi H.J., Liu Z., Sun C.J., Li G.Q., Wu G.Q., Shi F.Y., Liu A.Q., Yang N. Brown eggshell fading with layer ageing: dynamic change in the content of protoporphyrin IX. Poult. Sci. 2018;97:1948–1953. PubMed

Bilkova B., Swiderska Z., Zita L., Laloe D., Charles M., Benes V., Stopka P., Vinkler M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. J. Agr. Food Chem. 2018;66:11854–11863. PubMed

Butler M.W., McGraw K.J. Eggshell coloration reflects both yolk characteristics and dietary carotenoid history of female mallards. Funct. Ecol. 2013;27:1176–1185.

Butler M.W., Waite H.S. Eggshell biliverdin concentration does not sufficiently predict eggshell coloration. J. Avian Biol. 2016;47:491–499.

Carvalho T.S.M., Sousa L.S., Nogueira F.A., Vaz D.P., Saldanha M.M., Triginelli M.V., Pinto M., Baiao N.C., Lara L.J.C. Digestible methionine plus cysteine in the diet of commercial layers and its influence on the performance, quality, and amino acid profile of eggs and economic evaluation. Poult. Sci. 2018;97:2044–2052. PubMed

Cassey P., Thomas G.H., Portugal S.J., Maurer G., Hauber M.E., Grim T., Lovell P.G., Miksik I. Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol. J. Linn. Soc. 2012;106:657–672.

Chen X., Li X.Z., Guo Y.Y., Li W.B., Song J.L., Xu G.Y., Yang N., Zheng J.X. Impact of cuticle quality and eggshell thickness on egg antibacterial efficiency. Poult. Sci. 2019;98:940–948. PubMed

Chousalkar K., Gole V.C. Salmonellosis acquired from poultry. Curr. Opin. Infect. Dis. 2016;29:514–519. PubMed

Chousalkar K., Gast R., Martelli F., Pande V. Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit. Rev. Microbiol. 2018;44:290–303. PubMed

Cox J.M., Pavic A. Advances in enteropathogen control in poultry production. J. Appl. Microbiol. 2010;108:745–755. PubMed

Crawley M.J. John Wiley & Sons, Ltd.; New Jersey, USA: 2007. The R Book.

D'Alba L., Torres R., Waterhouse G.I.N., Eliason C., Hauber M.E., Shawkey M.D. What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiol. Biochem. Zool. 2017;90:588–599. PubMed

De Reu K., Messens W., Heyndrickx M., Rodenburg T.B., Uyttendaele M., Herman L. Bacterial contamination of table eggs and the influence of housing systems. World. Poult. Sci. J. 2008;64:5–19.

Dearborn D.C., Page S.M., Dainson M., Hauber M.E., Hanley D. Eggshells as hosts of bacterial communities: An experimental test of the antimicrobial egg coloration hypothesis. Ecol. Evol. 2017;7:9711–9719. PubMed PMC

Duval C., Cassey P., Miksik I., Reynolds S.J., Spencer K.A. Condition-dependent strategies of eggshell pigmentation: an experimental study of Japanese quail (Coturnix coturnix japonica) J. Exp. Biol. 2013;216:700–708. PubMed

Gautron J., Rehault-Godbert S., Pascal G., Nys Y., Hincke M.T. Ovocalyxin-36 and other LBP/BPI/PLUNC-like proteins as molecular actors of the mechanisms of the avian egg natural defences. Biochem. Soc. T. 2011;39:971–976. PubMed

Giansanti F., Leboffe L., Pitari G., Ippoliti R., Antonini G. Physiological roles of ovotransferrin. BBA-Gen. Subjects. 2012;1820:218–225. PubMed

Giansanti F., Massucci M.T., Giardi M.F., Nozza F., Pulsinelli E., Nicolini C., Botti D., Antonini G. Antiviral activity of ovotransferrin derived peptides. Biochem. Bioph. Res. Co. 2005;331:69–73. PubMed

Hargitai R., Herenyi M., Nagy G., Torok J. Eggshell spotting pattern is related to hatching asynchrony, hematocrit value and growth of nestling great tits Parus major. J. Avian Biol. 2018;49 10.1111/jav.01827.

Hargitai R., Nagy G., Herenyi M., Nyiri Z., Laczi M., Hegyi G., Eke Z., Torok J. Darker eggshell spotting indicates lower yolk antioxidant level and poorer female quality in the Eurasian Great Tit (Parus major) Auk. 2016;133:131–146.

He T., Zhang H.J., Wang J., Wu S.G., Yue H.Y., Qi G.H. Proteomic comparison by iTRAQ combined with mass spectrometry of egg white proteins in laying hens (Gallus gallus) fed with soybean meal and cottonseed meal. PLoS One. 2017;12 doi: 10.1371/journal.pone.0182886. PubMed DOI PMC

Horrocks N.P.C., Hine K., Hegemann A., Ndithia H.K., Shobrak M., Ostrowski S., Williams J.B., Matson K.D., Tieleman B.I. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front. Zool. 2014;11 doi: 10.1186/1742-9994-11-49. PubMed DOI PMC

Horrocks N.P.C., Tieleman B.I., Matson K.D. A simple assay for measurement of ovotransferrin - a marker of inflammation and infection in birds. Methods Ecol. Evol. 2011;2:518–526.

Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. PubMed

Ibrahim H.R., Matsuzaki T., Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 2001;506:27–32. PubMed

Ibrahim H.R., Sugimoto Y., Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. BBA-Gen. Subjects. 2000;1523:196–205. PubMed

Ibrahim H.R., Yamada M., Matsushita K., Kobayashi R., Kato A. Enhanced bactericidal action of lysozyme to Escherichia-coli by inserting a hydrophobic pentapeptide into its C-terminus. J. Biol. Chem. 1994;269:5059–5063. PubMed

Ishikawa S., Suzuki K., Fukuda E., Arihara K., Yamamoto Y., Mukai T., Itoh M. Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett. 2010;584:770–774. PubMed

Joseph N.S., Robinson N.A., Renema R.A., Robinson F.E. Shell quality and color variation in broiler breeder eggs. J. Appl. Poult. Res. 1999;8:70–74.

Kennedy G.Y., Vevers H.G. Survey of avian eggshell pigments. Comp. Biochem. Phys. B. 1976;55:117–123. PubMed

Ketta M., Tumova E. Eggshell characteristics and cuticle deposition in three laying hen genotypes housed in enriched cages and on litter. Czech J. Anim. Sci. 2018;63:11–16.

Kinoshita K., Myint S.L., Shimogiri T., Ibrahim H.R., Kawabe K., Okamoto S., Lee Y.P., Matsuda Y., Maeda Y. Chicken ovotransferrin variants OTFB and OTFC harboring substitution of GAT (Asp) to AAT (Asn) in the codon 500 and their antimicrobial activity. J. Poult. Sci. 2016;53:257–263. PubMed PMC

Kozuszek R., Kontecka H., Nowaczewski S., Lesnierowski G., Kijowski J., Rosinski A. Quality of pheasant (Phasianus colchicus L.) eggs with different shell colour. Arch. Geflugelkd. 2009;73:201–207.

Kulshreshtha G., Rodriguez-Navarro A., Sanchez-Rodriguez E., Diep T., Hincke M.T. Cuticle and pore plug properties in the table egg. Poult. Sci. 2018;97:1382–1390. PubMed

Li G.Q., Sun C.J., Wu G.Q., Shi F.Y., Liu A.Q., Yang N. iTRAQ-based quantitative proteomics identifies potential regulatory proteins involved in chicken eggshell brownness. PLoS One. 2016;11 doi: 10.1371/journal.pone.0168750. PubMed DOI PMC

Masschalck B., Michiels C.W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 2003;29:191–214. PubMed

Maurer G., Portugal S.J., Cassey P. Review: an embryo's eye view of avian eggshell pigmentation. J, Avian Biol. 2011;42:494–504.

Mertens K., Vaesen I., Loffel J., Kemps B., Kamers B., Perianu C., Zoons J., Darius P., Decuypere E., De Baerdemaeker J., De Ketelaere B. The transmission color value: a novel egg quality measure for recording shell color used for monitoring the stress and health status of a brown layer flock. Poult. Sci. 2010;89:609–617. PubMed

Miksik I., Ergang P., Pacha J. Proteomic analysis of chicken eggshell cuticle membrane layer. Anal. Bioanal. Chem. 2014;406:7633–7640. PubMed

Miksik I., Holan V., Deyl Z. Avian eggshell pigments and their variability. Comp. Biochem. Physiol. B. 1996;113:607–612.

Myint S.L., Kinoshita K., Shimogiri T., Ibrahim H.R., Tsusaki T., Tanoue T., Kawabe K., Maeda Y., Okamoto S. Effect of polymorphism in egg white lysozyme on muramidase and antibacterial activities as well as hatchability in the Japanese quail (Coturnix japonica) J. Anim. Sci. 2012;90:1747–1755. PubMed

Myint S.L., Shimogiri T., Kinoshita K., Nirasawa K., Saitoh N., Watanabe H., Kawabe K., Maeda Y., Okamoto S. Analysis of egg white lysozyme polymorphisms among Japanese Quail populations in Japan and France. J. Poult. Sci. 2012;49:74–78.

Narushin V.G. Production, modeling, and education - Egg geometry calculation using the measurements of length and breadth. Poult. Sci. 2005;84:482–484. PubMed

Nowaczewski S., Szablewski T., Cegielska-Radziejewska R., Stuper-Szablewska K., Rudzinska M., Lesnierowski G., Kontecka H., Szulc K. Effect of housing system and eggshell colour on biochemical and microbiological characteristics of pheasant eggs. Arch. Geflugelkd. 2013;77:226–233.

Nys Y., Gautron J., Garcia-Ruiz J.M., Hincke M.T. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. C. R. Palevol. 2004;3:549–562.

Odabasi A.Z., Miles R.D., Balaban M.O., Portier K.M. Changes in brown eggshell color as the hen ages. Poult. Sci. 2007;86:356–363. PubMed

Osserman E.F., Lawlor D.P. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J. Exp. Med. 1966;124:921–931. PubMed PMC

Palmiter R.D., Mulvihill E.R., Shepherd J.H., McKnight G.S. Steroid-hormone regulation of ovalbumin and conalbumin gene-transcription - a model based upon multiple regulatory sites and intermediary proteins. J. Biol. Chem. 1981;256:7910–7916. PubMed

RStudio Team . RStudio, Inc.; Boston, MA: 2015. RStudio: Integrated Development for R.http://www.rstudio.com/

Rubin C.J., Zody M.C., Eriksson J., Meadows J.R.S., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallbook F., Besnier F., Carlborg O., Bed'hom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587–U145. PubMed

Samiullah S., Omar A.S., Roberts J., Chousalkar K. Effect of production system and flock age on eggshell and egg internal quality measurements. Poult. Sci. 2017;96:246–258. PubMed

Samiullah S., Roberts J.R. The eggshell cuticle of the laying hen. World Poult. Sci. J. 2014;70:693–707.

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Sellier N., Vidal M.L., Baron F., Michel J., Gautron J., Protais M., Beaumont C., Gautier M., Nys Y. Estimations of repeatability and heritability of egg albumen antimicrobial activity and of lysozyme and ovotransferrin concentrations. Brit. Poult. Sci. 2007;48:559–566. PubMed

Soh T., Fujihara N., Koga O. Observations of pigment accumulation in the epithelium of the shell gland and superficial pigmentation on the egg-shell in japanese-quail. J. Fac. Agr. Kyushu U. 1993;38:73–80.

Soh T., Koga O. The effects of sex steroid-hormones on the pigment accumulation in the shell gland of japanese-quail. Poult. Sci. 1994;73:179–185. PubMed

Soler J.J., Ruiz-Castellano C., Figuerola J., Martinez-de la Puente J., Ruiz-Rodriguez M., Tomas G. Egg colouration predicts brood size, telomere length and body condition of spotless starling fledglings. J. Avian Biol. 2018;49 doi: 10.1111/jav.01686. DOI

Stevens L. Egg-white proteins. Comp. Biochem. Physiol. B. 1991;100:1–9. PubMed

Sun C.J., Liu J.N., Li W.B., Xu G.Y., Yang N. Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon. Proteomics. 2017;17:12. doi: 10.1002/pmic.201700145. PubMed DOI

Svobodová J., Šmídová L., Gvoždíková Javůrková V. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. J. Exp. Biol. 2019;222 doi: 10.1242/jeb.201442. PubMed DOI

Ugurlu M., Das Y.K., Akdag F., Atmaca E., Salman M., Teke B., Arslan S. Effect of egg weight and amount of protoporphyrin and biliverdin in the egg shell on hatching characteristics and embryonal mortality in pheasants (Phasianus colchicus) Ankara Univ. Vet. Fak. 2017;64:117–124.

Vlckova J., Tumova E., Ketta M., Englmaierova M., Chodova D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018;63:51–60.

Vlckova J., Tumova E., Mikova K., Englmaierova M., Okrouhla M., Chodova D. Changes in the quality of eggs during storage depending on the housing system and the age of hens. Poult. Sci. 2019 doi: 10.3382/ps/pez401. pez401. PubMed DOI

Wang Z.P., Meng G.H., Bai Y., Liu R.F., Du Y., Su L.H. Comparative transcriptome analysis provides clues to molecular mechanisms underlying blue-green eggshell color in the Jinding duck (Anas platyrhynchos) BMC Genomics. 2017;18 doi: 10.1186/s12864-017-4135-2. PubMed DOI PMC

Wang Z.P., Qu L.J., Yao J.F., Yang X.L., Li G.Q., Zhang Y.Y., Li J.Y., Wang X.T., Bai J.R., Xu G.Y., Deng X.M., Yang N., Wu C.X. An EAV-HP insertion in 5 ′ flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet. 2013;9 doi: 10.1371/journal.pgen.1003183. PubMed DOI PMC

Wellman-Labadie O., Picman J., Hincke M.T. Antimicrobial activity of cuticle and outer eggshell protein extracts from three species of domestic birds. Brit. Poultry Sci. 2008;49:133–143. PubMed

Wellman-Labadie O., Picman J., Hincke M.T. Comparative antibacterial activity of avian egg white protein extracts. Brit. Poultry Sci. 2008;49:125–132. PubMed

Wellman-Labadie O., Picman J., Hincke M.T. Enhanced c-type lysozyme content of wood duck (Aix sponsa) egg white: An adaptation to cavity nesting? Physiol. Biochem. Zool. 2008;81:235–245. PubMed

Wickham H. Springer-Verlag; New York, USA: 2016. ggplot2: Elegant Graphics for Data Analysis.

Yamanishi H., Iyama S., Yamaguchi Y., Kanakura Y., Iwatani Y. Modification of fully automated total iron-binding capacity (TIBC) assay in serum and comparison with dimension TIBC method. Clin. Chem. 2002;48:1565–1570. PubMed

Yang H.M., Wang Z.Y., Lu J. Study on the relationship between eggshell colors and egg quality as well as shell ultrastructure in Yangzhou chicken. Afr. J. Biotechnol. 2009;8:2898–2902.

Zhang L., Chen D.M., Yu L.T., Wei Y., Li J., Zhou C.Q. Genome-wide analysis of the ovodefensin gene family: Monophyletic origin, independent gene duplication and presence of different selection patterns. Infect. Genet. Evol. 2019;68:265–272. PubMed

Zhang M.M., Yang L., Su Z.C., Zhu M.Z., Li W.T., Wu K.L., Deng X.M. Genome-wide scan and analysis of positive selective signatures in Dwarf Brown-egg Layers and Silky Fowl chickens. Poult. Sci. 2017;96:4158–4171. PubMed

Zheng C.W., Li Z.S., Yang N., Ning Z.H. Quantitative expression of candidate genes affecting eggshell color. Anim. Sci. J. 2014;85:506–510. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Effect of Hen Genotype and Laying Time on Egg Quality and Albumen Lysozyme Content and Activity

. 2023 May 11 ; 13 (10) : . [epub] 20230511

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...