Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breeds
Language English Country Great Britain, England Media print
Document type Journal Article
PubMed
31420680
PubMed Central
PMC8913977
DOI
10.3382/ps/pez472
PII: S0032-5791(19)58004-X
Knihovny.cz E-resources
- Keywords
- albumen, eggshell colour, lysozyme, ovotransferrin, protoporphyrin IX,
- MeSH
- Immunomodulation genetics MeSH
- Antimicrobial Cationic Peptides genetics metabolism MeSH
- Chickens genetics immunology metabolism MeSH
- Pigmentation MeSH
- Avian Proteins genetics metabolism MeSH
- Egg Shell chemistry MeSH
- Egg Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antimicrobial Cationic Peptides MeSH
- Avian Proteins MeSH
- Egg Proteins MeSH
Eggshell colour, quality, and biosafety of table eggs are of significant commercial interest. To date, there have been few studies investigating the relationship between eggshell pigmentation and internal egg quality in commercially bred birds. Moreover, the genetic basis and mechanisms behind the effects of extrinsic factors on deposition of antimicrobial compounds in egg white and eggshell pigments are not fully understood. In the present study, we evaluate the effect of chicken breed identity, eggshell pigmentation and the role of extrinsic factors (year and breeder identity) on variability in the concentrations of 2 major egg white antimicrobial proteins (AMPs), lysozyme (LSM), and ovotransferrin (OVOTR), across 23 traditional chicken breeds. We found that chicken breed identity and eggshell pigmentation explained most variability in the concentration of egg white LSM and OVOTR. Year and breeder identity were also significant predictors of egg white LSM and OVOTR variability, and showed selective effects on the deposition of both AMPs in egg white. We also documented a positive correlation between concentration of egg white LSM and eggshell cuticle protoporphyrin in tinted and dark brown eggs, but not in brown, white, and blue eggs. We assume that a combination of both intrinsic genetic and hormonally regulated extrinsic factors is responsible for this relationship and for the variability in egg white AMPs. In this study, we demonstrate the existence of a relationship between eggshell pigmentation and egg white AMPs content in the eggs of traditional chicken breeds that may advertise the egg's antimicrobial potential and biosafety. These findings provide novel insights into the relationship between eggshell pigmentation and egg internal quality and may stimulate the recovery and exploitation of traditional chicken breeds for egg production, where the demands for egg quality and biosafety, in conjunction with animal welfare, are a priority.
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Prague 2 Czech Republic
Institute of Physiology of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague Czech Republic
See more in PubMed
Ahmed B., De Boeck C., Dumont A., Cox E., De Reu K., Vanrompay D. First experimental evidence for the transmission of Chlamydia psittaci in poultry through eggshell penetration. Transbound. Emerg. Dis. 2017;64:167–170. PubMed
Bai D.P., Lin X.Y., Wu Y., Zhou S.Y., Huang Z.B., Huang Y.F., Li A., Huang X.H. Isolation of blue-green eggshell pigmentation-related genes from Putian duck through RNA-seq. BMC Genomics. 2019;20:66. doi: 10.1186/s12864-019-5436-4. PubMed DOI PMC
Bain M.M., McDade K., Burchmore R., Law A., Wilson P.W., Schmutz M., Preisinger R., Dunn I.C. Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Anim. Genet. 2013;44:661–668. PubMed
Bain M.M., Zheng J.X., Zigler M., Whenham N., Quinlan-Pluck F., Jones A.C., Roberts M., Icken W., Olori V.E., Dunn I.C. Cuticle deposition improves the biosecurity of eggs through the laying cycle and can be measured on hatching eggs without compromising embryonic development. Poult. Sci. 2019;98:1775–1784. PubMed
Baron F., Jan S. In: Improving the Safety and Quality of Eggs and Egg Products. Nys Y., Bain M., Immerseel F.V., editors. Woodhead Publishing Ltd; Cambridge, UK: 2011. Egg and egg product microbiology; pp. 330–350.
Baron F., Jan S., Gonnet F., Pasco M., Jardin J., Giudici B., Gautier M., Guerin-Dubiard C., Nau F. Ovotransferrin plays a major role in the strong bactericidal effect of egg white against the Bacillus cereus group. J. Food Protect. 2014;77:955–962. PubMed
Bates D., Machler M., Bolker B.M., Walker S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48.
Bedrani L., Helloin E., Guyot N., Nys Y. Systemic administration of lipopolysaccharide in laying hens stimulates antimicrobial properties of egg white against Staphylococcus aureus. Vet, Immunol. Immunop. 2013;152:225–236. PubMed
Bedrani L., Helloin E., Guyot N., Rehault-Godbert S., Nys Y. Passive maternal exposure to environmental microbes selectively modulates the innate defences of chicken egg white by increasing some of its antibacterial activities. BMC Microbiol. 2013;13:128. doi: 10.1186/1471-2180-13-128. PubMed DOI PMC
Bi H.J., Liu Z., Sun C.J., Li G.Q., Wu G.Q., Shi F.Y., Liu A.Q., Yang N. Brown eggshell fading with layer ageing: dynamic change in the content of protoporphyrin IX. Poult. Sci. 2018;97:1948–1953. PubMed
Bilkova B., Swiderska Z., Zita L., Laloe D., Charles M., Benes V., Stopka P., Vinkler M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. J. Agr. Food Chem. 2018;66:11854–11863. PubMed
Butler M.W., McGraw K.J. Eggshell coloration reflects both yolk characteristics and dietary carotenoid history of female mallards. Funct. Ecol. 2013;27:1176–1185.
Butler M.W., Waite H.S. Eggshell biliverdin concentration does not sufficiently predict eggshell coloration. J. Avian Biol. 2016;47:491–499.
Carvalho T.S.M., Sousa L.S., Nogueira F.A., Vaz D.P., Saldanha M.M., Triginelli M.V., Pinto M., Baiao N.C., Lara L.J.C. Digestible methionine plus cysteine in the diet of commercial layers and its influence on the performance, quality, and amino acid profile of eggs and economic evaluation. Poult. Sci. 2018;97:2044–2052. PubMed
Cassey P., Thomas G.H., Portugal S.J., Maurer G., Hauber M.E., Grim T., Lovell P.G., Miksik I. Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol. J. Linn. Soc. 2012;106:657–672.
Chen X., Li X.Z., Guo Y.Y., Li W.B., Song J.L., Xu G.Y., Yang N., Zheng J.X. Impact of cuticle quality and eggshell thickness on egg antibacterial efficiency. Poult. Sci. 2019;98:940–948. PubMed
Chousalkar K., Gole V.C. Salmonellosis acquired from poultry. Curr. Opin. Infect. Dis. 2016;29:514–519. PubMed
Chousalkar K., Gast R., Martelli F., Pande V. Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit. Rev. Microbiol. 2018;44:290–303. PubMed
Cox J.M., Pavic A. Advances in enteropathogen control in poultry production. J. Appl. Microbiol. 2010;108:745–755. PubMed
Crawley M.J. John Wiley & Sons, Ltd.; New Jersey, USA: 2007. The R Book.
D'Alba L., Torres R., Waterhouse G.I.N., Eliason C., Hauber M.E., Shawkey M.D. What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiol. Biochem. Zool. 2017;90:588–599. PubMed
De Reu K., Messens W., Heyndrickx M., Rodenburg T.B., Uyttendaele M., Herman L. Bacterial contamination of table eggs and the influence of housing systems. World. Poult. Sci. J. 2008;64:5–19.
Dearborn D.C., Page S.M., Dainson M., Hauber M.E., Hanley D. Eggshells as hosts of bacterial communities: An experimental test of the antimicrobial egg coloration hypothesis. Ecol. Evol. 2017;7:9711–9719. PubMed PMC
Duval C., Cassey P., Miksik I., Reynolds S.J., Spencer K.A. Condition-dependent strategies of eggshell pigmentation: an experimental study of Japanese quail (Coturnix coturnix japonica) J. Exp. Biol. 2013;216:700–708. PubMed
Gautron J., Rehault-Godbert S., Pascal G., Nys Y., Hincke M.T. Ovocalyxin-36 and other LBP/BPI/PLUNC-like proteins as molecular actors of the mechanisms of the avian egg natural defences. Biochem. Soc. T. 2011;39:971–976. PubMed
Giansanti F., Leboffe L., Pitari G., Ippoliti R., Antonini G. Physiological roles of ovotransferrin. BBA-Gen. Subjects. 2012;1820:218–225. PubMed
Giansanti F., Massucci M.T., Giardi M.F., Nozza F., Pulsinelli E., Nicolini C., Botti D., Antonini G. Antiviral activity of ovotransferrin derived peptides. Biochem. Bioph. Res. Co. 2005;331:69–73. PubMed
Hargitai R., Herenyi M., Nagy G., Torok J. Eggshell spotting pattern is related to hatching asynchrony, hematocrit value and growth of nestling great tits Parus major. J. Avian Biol. 2018;49 10.1111/jav.01827.
Hargitai R., Nagy G., Herenyi M., Nyiri Z., Laczi M., Hegyi G., Eke Z., Torok J. Darker eggshell spotting indicates lower yolk antioxidant level and poorer female quality in the Eurasian Great Tit (Parus major) Auk. 2016;133:131–146.
He T., Zhang H.J., Wang J., Wu S.G., Yue H.Y., Qi G.H. Proteomic comparison by iTRAQ combined with mass spectrometry of egg white proteins in laying hens (Gallus gallus) fed with soybean meal and cottonseed meal. PLoS One. 2017;12 doi: 10.1371/journal.pone.0182886. PubMed DOI PMC
Horrocks N.P.C., Hine K., Hegemann A., Ndithia H.K., Shobrak M., Ostrowski S., Williams J.B., Matson K.D., Tieleman B.I. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front. Zool. 2014;11 doi: 10.1186/1742-9994-11-49. PubMed DOI PMC
Horrocks N.P.C., Tieleman B.I., Matson K.D. A simple assay for measurement of ovotransferrin - a marker of inflammation and infection in birds. Methods Ecol. Evol. 2011;2:518–526.
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. PubMed
Ibrahim H.R., Matsuzaki T., Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 2001;506:27–32. PubMed
Ibrahim H.R., Sugimoto Y., Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. BBA-Gen. Subjects. 2000;1523:196–205. PubMed
Ibrahim H.R., Yamada M., Matsushita K., Kobayashi R., Kato A. Enhanced bactericidal action of lysozyme to Escherichia-coli by inserting a hydrophobic pentapeptide into its C-terminus. J. Biol. Chem. 1994;269:5059–5063. PubMed
Ishikawa S., Suzuki K., Fukuda E., Arihara K., Yamamoto Y., Mukai T., Itoh M. Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett. 2010;584:770–774. PubMed
Joseph N.S., Robinson N.A., Renema R.A., Robinson F.E. Shell quality and color variation in broiler breeder eggs. J. Appl. Poult. Res. 1999;8:70–74.
Kennedy G.Y., Vevers H.G. Survey of avian eggshell pigments. Comp. Biochem. Phys. B. 1976;55:117–123. PubMed
Ketta M., Tumova E. Eggshell characteristics and cuticle deposition in three laying hen genotypes housed in enriched cages and on litter. Czech J. Anim. Sci. 2018;63:11–16.
Kinoshita K., Myint S.L., Shimogiri T., Ibrahim H.R., Kawabe K., Okamoto S., Lee Y.P., Matsuda Y., Maeda Y. Chicken ovotransferrin variants OTFB and OTFC harboring substitution of GAT (Asp) to AAT (Asn) in the codon 500 and their antimicrobial activity. J. Poult. Sci. 2016;53:257–263. PubMed PMC
Kozuszek R., Kontecka H., Nowaczewski S., Lesnierowski G., Kijowski J., Rosinski A. Quality of pheasant (Phasianus colchicus L.) eggs with different shell colour. Arch. Geflugelkd. 2009;73:201–207.
Kulshreshtha G., Rodriguez-Navarro A., Sanchez-Rodriguez E., Diep T., Hincke M.T. Cuticle and pore plug properties in the table egg. Poult. Sci. 2018;97:1382–1390. PubMed
Li G.Q., Sun C.J., Wu G.Q., Shi F.Y., Liu A.Q., Yang N. iTRAQ-based quantitative proteomics identifies potential regulatory proteins involved in chicken eggshell brownness. PLoS One. 2016;11 doi: 10.1371/journal.pone.0168750. PubMed DOI PMC
Masschalck B., Michiels C.W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 2003;29:191–214. PubMed
Maurer G., Portugal S.J., Cassey P. Review: an embryo's eye view of avian eggshell pigmentation. J, Avian Biol. 2011;42:494–504.
Mertens K., Vaesen I., Loffel J., Kemps B., Kamers B., Perianu C., Zoons J., Darius P., Decuypere E., De Baerdemaeker J., De Ketelaere B. The transmission color value: a novel egg quality measure for recording shell color used for monitoring the stress and health status of a brown layer flock. Poult. Sci. 2010;89:609–617. PubMed
Miksik I., Ergang P., Pacha J. Proteomic analysis of chicken eggshell cuticle membrane layer. Anal. Bioanal. Chem. 2014;406:7633–7640. PubMed
Miksik I., Holan V., Deyl Z. Avian eggshell pigments and their variability. Comp. Biochem. Physiol. B. 1996;113:607–612.
Myint S.L., Kinoshita K., Shimogiri T., Ibrahim H.R., Tsusaki T., Tanoue T., Kawabe K., Maeda Y., Okamoto S. Effect of polymorphism in egg white lysozyme on muramidase and antibacterial activities as well as hatchability in the Japanese quail (Coturnix japonica) J. Anim. Sci. 2012;90:1747–1755. PubMed
Myint S.L., Shimogiri T., Kinoshita K., Nirasawa K., Saitoh N., Watanabe H., Kawabe K., Maeda Y., Okamoto S. Analysis of egg white lysozyme polymorphisms among Japanese Quail populations in Japan and France. J. Poult. Sci. 2012;49:74–78.
Narushin V.G. Production, modeling, and education - Egg geometry calculation using the measurements of length and breadth. Poult. Sci. 2005;84:482–484. PubMed
Nowaczewski S., Szablewski T., Cegielska-Radziejewska R., Stuper-Szablewska K., Rudzinska M., Lesnierowski G., Kontecka H., Szulc K. Effect of housing system and eggshell colour on biochemical and microbiological characteristics of pheasant eggs. Arch. Geflugelkd. 2013;77:226–233.
Nys Y., Gautron J., Garcia-Ruiz J.M., Hincke M.T. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. C. R. Palevol. 2004;3:549–562.
Odabasi A.Z., Miles R.D., Balaban M.O., Portier K.M. Changes in brown eggshell color as the hen ages. Poult. Sci. 2007;86:356–363. PubMed
Osserman E.F., Lawlor D.P. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. J. Exp. Med. 1966;124:921–931. PubMed PMC
Palmiter R.D., Mulvihill E.R., Shepherd J.H., McKnight G.S. Steroid-hormone regulation of ovalbumin and conalbumin gene-transcription - a model based upon multiple regulatory sites and intermediary proteins. J. Biol. Chem. 1981;256:7910–7916. PubMed
RStudio Team . RStudio, Inc.; Boston, MA: 2015. RStudio: Integrated Development for R.http://www.rstudio.com/
Rubin C.J., Zody M.C., Eriksson J., Meadows J.R.S., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallbook F., Besnier F., Carlborg O., Bed'hom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587–U145. PubMed
Samiullah S., Omar A.S., Roberts J., Chousalkar K. Effect of production system and flock age on eggshell and egg internal quality measurements. Poult. Sci. 2017;96:246–258. PubMed
Samiullah S., Roberts J.R. The eggshell cuticle of the laying hen. World Poult. Sci. J. 2014;70:693–707.
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Sellier N., Vidal M.L., Baron F., Michel J., Gautron J., Protais M., Beaumont C., Gautier M., Nys Y. Estimations of repeatability and heritability of egg albumen antimicrobial activity and of lysozyme and ovotransferrin concentrations. Brit. Poult. Sci. 2007;48:559–566. PubMed
Soh T., Fujihara N., Koga O. Observations of pigment accumulation in the epithelium of the shell gland and superficial pigmentation on the egg-shell in japanese-quail. J. Fac. Agr. Kyushu U. 1993;38:73–80.
Soh T., Koga O. The effects of sex steroid-hormones on the pigment accumulation in the shell gland of japanese-quail. Poult. Sci. 1994;73:179–185. PubMed
Soler J.J., Ruiz-Castellano C., Figuerola J., Martinez-de la Puente J., Ruiz-Rodriguez M., Tomas G. Egg colouration predicts brood size, telomere length and body condition of spotless starling fledglings. J. Avian Biol. 2018;49 doi: 10.1111/jav.01686. DOI
Stevens L. Egg-white proteins. Comp. Biochem. Physiol. B. 1991;100:1–9. PubMed
Sun C.J., Liu J.N., Li W.B., Xu G.Y., Yang N. Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon. Proteomics. 2017;17:12. doi: 10.1002/pmic.201700145. PubMed DOI
Svobodová J., Šmídová L., Gvoždíková Javůrková V. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. J. Exp. Biol. 2019;222 doi: 10.1242/jeb.201442. PubMed DOI
Ugurlu M., Das Y.K., Akdag F., Atmaca E., Salman M., Teke B., Arslan S. Effect of egg weight and amount of protoporphyrin and biliverdin in the egg shell on hatching characteristics and embryonal mortality in pheasants (Phasianus colchicus) Ankara Univ. Vet. Fak. 2017;64:117–124.
Vlckova J., Tumova E., Ketta M., Englmaierova M., Chodova D. Effect of housing system and age of laying hens on eggshell quality, microbial contamination, and penetration of microorganisms into eggs. Czech J. Anim. Sci. 2018;63:51–60.
Vlckova J., Tumova E., Mikova K., Englmaierova M., Okrouhla M., Chodova D. Changes in the quality of eggs during storage depending on the housing system and the age of hens. Poult. Sci. 2019 doi: 10.3382/ps/pez401. pez401. PubMed DOI
Wang Z.P., Meng G.H., Bai Y., Liu R.F., Du Y., Su L.H. Comparative transcriptome analysis provides clues to molecular mechanisms underlying blue-green eggshell color in the Jinding duck (Anas platyrhynchos) BMC Genomics. 2017;18 doi: 10.1186/s12864-017-4135-2. PubMed DOI PMC
Wang Z.P., Qu L.J., Yao J.F., Yang X.L., Li G.Q., Zhang Y.Y., Li J.Y., Wang X.T., Bai J.R., Xu G.Y., Deng X.M., Yang N., Wu C.X. An EAV-HP insertion in 5 ′ flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet. 2013;9 doi: 10.1371/journal.pgen.1003183. PubMed DOI PMC
Wellman-Labadie O., Picman J., Hincke M.T. Antimicrobial activity of cuticle and outer eggshell protein extracts from three species of domestic birds. Brit. Poultry Sci. 2008;49:133–143. PubMed
Wellman-Labadie O., Picman J., Hincke M.T. Comparative antibacterial activity of avian egg white protein extracts. Brit. Poultry Sci. 2008;49:125–132. PubMed
Wellman-Labadie O., Picman J., Hincke M.T. Enhanced c-type lysozyme content of wood duck (Aix sponsa) egg white: An adaptation to cavity nesting? Physiol. Biochem. Zool. 2008;81:235–245. PubMed
Wickham H. Springer-Verlag; New York, USA: 2016. ggplot2: Elegant Graphics for Data Analysis.
Yamanishi H., Iyama S., Yamaguchi Y., Kanakura Y., Iwatani Y. Modification of fully automated total iron-binding capacity (TIBC) assay in serum and comparison with dimension TIBC method. Clin. Chem. 2002;48:1565–1570. PubMed
Yang H.M., Wang Z.Y., Lu J. Study on the relationship between eggshell colors and egg quality as well as shell ultrastructure in Yangzhou chicken. Afr. J. Biotechnol. 2009;8:2898–2902.
Zhang L., Chen D.M., Yu L.T., Wei Y., Li J., Zhou C.Q. Genome-wide analysis of the ovodefensin gene family: Monophyletic origin, independent gene duplication and presence of different selection patterns. Infect. Genet. Evol. 2019;68:265–272. PubMed
Zhang M.M., Yang L., Su Z.C., Zhu M.Z., Li W.T., Wu K.L., Deng X.M. Genome-wide scan and analysis of positive selective signatures in Dwarf Brown-egg Layers and Silky Fowl chickens. Poult. Sci. 2017;96:4158–4171. PubMed
Zheng C.W., Li Z.S., Yang N., Ning Z.H. Quantitative expression of candidate genes affecting eggshell color. Anim. Sci. J. 2014;85:506–510. PubMed