Homologous recombination DNA repair defects in PALB2-associated breast cancers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 CA008748
NCI NIH HHS - United States
R01 CA138804
NCI NIH HHS - United States
PubMed
31428676
PubMed Central
PMC6687719
DOI
10.1038/s41523-019-0115-9
PII: 115
Knihovny.cz E-zdroje
- Klíčová slova
- Breast cancer, Cancer genetics, Cancer genomics,
- Publikační typ
- časopisecké články MeSH
Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.
Biocenter Kuopio and Cancer Center of Easter Finland University of Eastern Finland Kuopio Finland
Cancer Axis Lady Davis Institute Jewish General Hospital Montreal Quebec Canada
Cancer Prevention Center Jewish General Hospital Montreal Quebec Canada
Cancer Program Research Institute McGill University Health Centre Montreal Quebec Canada
Cancer Research Malaysia Subang Jaya Malaysia
Clinical Genetics Unit Department of Pediatrics Zealand University Hospital Roskilde Denmark
Department of Clinical Genetics Aarhus University Hospital Aarhus Denmark
Department of Clinical Genetics Vejle Hospital Vejle Denmark
Department of Medical Genetics University of Cambridge Cambridge UK
Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA
Department of Pathology Faculty of Medicine University Malaya Kuala Lumpur Malaysia
Department of Pathology Memorial Sloan Kettering Cancer Center New York NY USA
Department of Pathology Subang Jaya Medical Centre Subang Jaya Selangor Malaysia
Department of Radiation Oncology Rutgers Cancer Institute of New Jersey New Brunswick NJ USA
Departments of Oncology and Human Genetics McGill University Montreal Quebec Canada
IFOM The Italian Foundation for Cancer Research Institute of Molecular Oncology Milan Italy
Institute of Pathology University Hospital Basel Basel Switzerland
Ospedale Papa Giovanni XXIII Bergamo Italy
Precision Medicine School of Clinical Sciences at Monash Health Monash University Victoria Australia
Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
Zobrazit více v PubMed
Xia B, et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell. 2006;22:719–729. doi: 10.1016/j.molcel.2006.05.022. PubMed DOI
Reid S, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 2007;39:162–164. doi: 10.1038/ng1947. PubMed DOI
Kanchi KL, et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat. Commun. 2014;5:3156. doi: 10.1038/ncomms4156. PubMed DOI PMC
Antoniou AC, et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014;371:497–506. doi: 10.1056/NEJMoa1400382. PubMed DOI PMC
Takeuchi S, Doi M, Ikari N, Yamamoto M, Furukawa T. Mutations in BRCA1, BRCA2, and PALB2, and a panel of 50 cancer-associated genes in pancreatic ductal adenocarcinoma. Sci. Rep. 2018;8:8105. doi: 10.1038/s41598-018-26526-x. PubMed DOI PMC
Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J. Clin. Oncol. 2007;25:1329–1333. doi: 10.1200/JCO.2006.09.1066. PubMed DOI PMC
Cybulski C, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol. 2015;16:638–644. doi: 10.1016/S1470-2045(15)70142-7. PubMed DOI
Nikkila J, et al. Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat. Commun. 2013;4:2578. doi: 10.1038/ncomms3578. PubMed DOI PMC
Foo TK, et al. Compromised BRCA1-PALB2 interaction is associated with breast cancer risk. Oncogene. 2017;36:4161–4170. doi: 10.1038/onc.2017.46. PubMed DOI PMC
Isaac, D., Karapetyan, L., Tamkus, D. Association of germline PALB2 mutation and response to platinum-based chemotherapy in metastatic breast cancer: a case series. JCO Precision Oncol.2, 1–5 (2018). PubMed
Knudson AG. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer. 2001;1:157–162. doi: 10.1038/35101031. PubMed DOI
Lee JEA, et al. Molecular analysis of PALB2-associated breast cancers. J. Pathol. 2018;245:53–60. doi: 10.1002/path.5055. PubMed DOI
Potapova A, Hoffman AM, Godwin AK, Al-Saleem T, Cairns P. Promoter hypermethylation of the PALB2 susceptibility gene in inherited and sporadic breast and ovarian cancer. Cancer Res. 2008;68:998–1002. doi: 10.1158/0008-5472.CAN-07-2418. PubMed DOI
Poumpouridou N, et al. Development and validation of molecular methodologies to assess PALB2 expression in sporadic breast cancer. Clin. Biochem. 2016;49:253–259. doi: 10.1016/j.clinbiochem.2015.10.009. PubMed DOI
Riaz N, et al. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nat. Commun. 2017;8:857. doi: 10.1038/s41467-017-00921-w. PubMed DOI PMC
Foulkes WD, et al. Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res. 2007;9:R83. doi: 10.1186/bcr1828. PubMed DOI PMC
Erkko H, et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature. 2007;446:316–319. doi: 10.1038/nature05609. PubMed DOI
Ramus S. J. et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J. Natl Cancer Inst. 107, pii: djv214 (2015). PubMed PMC
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412. PubMed DOI PMC
Cheng DT, et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 2015;17:251–264. doi: 10.1016/j.jmoldx.2014.12.006. PubMed DOI PMC
Honrado E, Osorio A, Palacios J, Benitez J. Pathology and gene expression of hereditary breast tumors associated with BRCA1, BRCA2 and CHEK2 gene mutations. Oncogene. 2006;25:5837–5845. doi: 10.1038/sj.onc.1209875. PubMed DOI
Weigelt B, et al. The landscape of somatic genetic alterations in breast cancers from ATM germline mutation carriers. J. Natl. Cancer Inst. 2018;110:1030–1034. doi: 10.1093/jnci/djy028. PubMed DOI PMC
Turner NC, Reis-Filho JS. Tackling the diversity of triple-negative breast cancer. Clin. Cancer Res. 2013;19:6380–6388. doi: 10.1158/1078-0432.CCR-13-0915. PubMed DOI
Polak Paz, Kim Jaegil, Braunstein Lior Z, Karlic Rosa, Haradhavala Nicholas J, Tiao Grace, Rosebrock Daniel, Livitz Dimitri, Kübler Kirsten, Mouw Kent W, Kamburov Atanas, Maruvka Yosef E, Leshchiner Ignaty, Lander Eric S, Golub Todd R, Zick Aviad, Orthwein Alexandre, Lawrence Michael S, Batra Rajbir N, Caldas Carlos, Haber Daniel A, Laird Peter W, Shen Hui, Ellisen Leif W, D'Andrea Alan D, Chanock Stephen J, Foulkes William D, Getz Gad. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nature Genetics. 2017;49(10):1476–1486. doi: 10.1038/ng.3934. PubMed DOI PMC
Alexandrov, L. et al. The repertoire of mutational signatures in human cancer. bioRxiv. 10.1101/322859 (2018).
Telli ML, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 2016;22:3764–3773. doi: 10.1158/1078-0432.CCR-15-2477. PubMed DOI PMC
Nik-Zainal S, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54. doi: 10.1038/nature17676. PubMed DOI PMC
Maxwell KN, et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat. Commun. 2017;8:319. doi: 10.1038/s41467-017-00388-9. PubMed DOI PMC
Mutter RW, et al. Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer. J. Pathol. 2017;242:165–177. doi: 10.1002/path.4890. PubMed DOI PMC
Hammond ME, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010;28:2784–2795. doi: 10.1200/JCO.2009.25.6529. PubMed DOI PMC
Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013;31:3997–4013. doi: 10.1200/JCO.2013.50.9984. PubMed DOI
Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch. Pathol. Lab Med. 2014;138:241–256. doi: 10.5858/arpa.2013-0953-SA. PubMed DOI PMC
Ng CKY, et al. The landscape of somatic genetic alterations in metaplastic breast carcinomas. Clin. Cancer Res. 2017;23:3859–3870. doi: 10.1158/1078-0432.CCR-16-2857. PubMed DOI PMC
Geyer FC, et al. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat. Commun. 2018;9:1816. doi: 10.1038/s41467-018-04128-5. PubMed DOI PMC
Li, A. et al. Metadata supporting data files of the related manuscript: homologous recombination DNA repair defects in PALB2-associated breast cancers. figshare 10.6084/m9.figshare.8138912 (2019).
Shen R, Seshan VE. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016;44:e131. doi: 10.1093/nar/gkw520. PubMed DOI PMC
Carter SL, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 2012;30:413–421. doi: 10.1038/nbt.2203. PubMed DOI PMC
Landau DA, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–726. doi: 10.1016/j.cell.2013.01.019. PubMed DOI PMC
Popova T, et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012;72:5454–5462. doi: 10.1158/0008-5472.CAN-12-1470. PubMed DOI
Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC
Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31. doi: 10.1186/s13059-016-0893-4. PubMed DOI PMC
Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinforma. 2010;11:367. doi: 10.1186/1471-2105-11-367. PubMed DOI PMC
Bailey MH, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173:371–385 e318. doi: 10.1016/j.cell.2018.02.060. PubMed DOI PMC