Thermodynamic properties of some isomeric 5-(nitrophenyl)-furyl-2 derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31428742
PubMed Central
PMC6694520
DOI
10.1186/s13065-019-0619-2
PII: 619
Knihovny.cz E-zdroje
- Klíčová slova
- Arylfuran derivatives, Combustion enthalpy, Formation enthalpy, Group-additivity correlation, Isomerization, Sublimation enthalpy, Vapor pressure,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of the current work was to determine thermodynamical properties of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrolphenyl)-2-furyl]acrylic acids. RESULTS: The temperature dependences of saturated vapor pressures of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrolphenyl)-2-furyl]acrylic acids were determined by the Knudsen effusion method. The results are presented by the Clapeyron-Clausius equation in linear form, and via this form, the standard enthalpies of sublimation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly from the corresponding standard molar combustion enthalpy, obtained using combustion bomb calorimetry. The non-nearest neighbour interactions (strain) in molecule were defined. The ideal-gas enthalpies of investigated compounds formation and the data available from the literature were used for calculation of group-additivity parameters and the correction terms useful in the application of the Benson correlation. CONCLUSION: Determining the thermodynamic properties for these compounds will contribute to solving practical problems pertaining to optimization processes of their synthesis, purification and application. It will also provide a more thorough insight regarding the theoretical knowledge of their nature and are necessary for the application of the Benson group-contribution correlation for calculation of Δ f H m ( 298.15 K ) o (g)calc.
Institute of Macromolecular Chemistry AS CR Heyrovsky Sq 2 Prague Czech Republic
Ivan Franko National University of Lviv Kyryla and Mefodiya Str 6 Lviv 79005 Ukraine
National University LvivPolytechnic S Bandery Str 12 Lviv 79013 Ukraine
Zobrazit více v PubMed
Datta A, Walia S, Parmar B. Some furfural derivatives as nitrification inhibitors. J Agric Food Chem. 2001;49:4726–4731. doi: 10.1021/jf001318d. PubMed DOI
Horak YuI, Matiychuk VS, Obushak MD, Kutsyk RV, Lytvyn RZ, Kurovets LM. 2-(5-Aryl-2-furyl)quinolin-4-carboxylic acids and their antimicrobial activity. Ukr Bioorg Acta. 2008;1:49–50.
Lv W, Banerjee B, Molland KL, Seleem MN, Ghafoor A, Hamed MI, Wan B, Franzblau SG, Mesecar AD, Cushman M. Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have antibacterial activity and also inhibit inorganic pyrophosphatase. Bioorg Med Chem. 2014;22:406–418. doi: 10.1016/j.bmc.2013.11.011. PubMed DOI PMC
Gavande NS, Vere-Carozza PV, Mishra AK, Vernon TL, Pawelczak KS, Turchi JJ. Design and structure-guided development of novel inhibitors of the xeroderma pigmentosum group A (XPA) protein–DNA interaction. J Med Chem. 2017;60:8055–8070. doi: 10.1021/acs.jmedchem.7b00780. PubMed DOI PMC
Hosoya T, Aoyama H, Ikemoto T, Kihara Y, Hiramatsu T, Endo M, Suzuki M. Dantrolene analogues revisited: general synthesis and specific functions capable of discriminating two kinds of Ca2+ release from sarcoplasmic reticulum of mouse sceletal muscle. Bioorg Med Chem. 2003;11:663–673. doi: 10.1016/S0968-0896(02)00600-4. PubMed DOI
Hansen SW, Erichsen MN, Fu B, Bjorn-Yoshimoto WE, Abrahamsen B, Hansen JC, Jensen AA, Bunch L. Identification of a new class of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitors followed by a structure–activity relationship study. J Med Chem. 2016;59:8757–8770. doi: 10.1021/acs.jmedchem.6b01058. PubMed DOI
Wang G, Wang X, Yu H, Wei S, Williams N, Holmes DL, Halfmann R, Naidoo J, Wang L, Li L, Chen S, Harran P, Lei X, Wang X. Small-molecule activation of the TRAIL receptor DR5 in human cancer cells. Nat Chem Biol. 2013;9:84–89. doi: 10.1038/nchembio.1153. PubMed DOI
Laforest J. Germany Patent 2922799. 1979
Brouwer WG. Canada Patent 2163175. 1996
Anthony VM. Russian Federation Patent 2039044. 1995
Meltzer RI, Lewis AD, King JA. Antitubercular substances. IV. Thioamides. J Am Chem Soc. 1955;77:4062–4066. doi: 10.1021/ja01620a029. DOI
Pandey OP, Sengupta SK, Chandra R. Efficacy of organophosphorus derivatives containing oximes against fungal pathogens of sugarcane. Met-Based Drugs. 2006;5:1515–1521. PubMed PMC
Ager DJ. The synthesis of 2,5-disubstituted furans. Tetrahedron Lett. 1983;24:5441–5444. doi: 10.1016/S0040-4039(00)94107-8. DOI
Bessin AP, Laforest J, Thuillier G. U.S. Patent 4207319. 1980
Thuillier G, Laforest J, Bessin AP. Germany Patent 2449205. 1975
Považanec F, Kováč J. Furan derivatives. CXXXV. Anhydrides of 3-(5-nitro-2-furyl)acrylic acid as starting materials for the synthesis of l-(5-nitro-2-furyl)-2-(1,3,4-oxadiazol-2-yl)-ethenes. Chem Zvesti. 1979;33:798–802.
Dibrivnyi V, Sobechko I, Puniak M, Horak Yu, Obushak M, Van-Chin-Syan Yu, Marshalek A, Velychkivska N. Thermodynamic properties of 5-(nitrophenyl)-furan-2-carbaldehyde isomers. Chem Cent J. 2015;9:67. doi: 10.1186/s13065-015-0144-x. PubMed DOI PMC
Kos R, Sobechko I, Horak Y, Sergeev V, Dibrivnyi V. Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoat derivatives. Modern Org Chem Res. 2017;2:74–80. doi: 10.22606/mocr.2017.22006. DOI
Kos RV, Sobechko IB, Horak YI, Sergeev VV, Goshko LV. Thermodynamic properties of isomeric ethyl esters of 2-cyano-3-[5-(2,3,4-nitrophenyl)-2-furan] acrylic acid. Issues Chem Chem Technol. 2017;2:15–20.
Chickos JS, Acree WE. Enthalpies of vaporization of organic and organometallic compounds 1880–2002. J Phys Chem Ref Data. 2003;32:519–878. doi: 10.1063/1.1529214. DOI
Dibrivnyi VN, Mel’nik GV, Van-Chin-Syan YY, Yuvchenko AP. The thermodynamic properties of four triphenylsilane acetylene peroxides. Russ J Phys Chem. 2006;80:330–334. doi: 10.1134/S0036024406030046. DOI
Hubbard WN, Scott DW, Waddington G. Experimental thermochemistry V1. In: Rossini FD, editor. Interscience. New York: Academic Press; 1956. p. 75.
Cox JD, Pilcher G. Thermochemistry of organic and organometallic compounds. New York: Academic Press; 1970.
Washburn EW. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–546. doi: 10.6028/jres.010.037. DOI
Cox JD, Wagman DD, Medvedev VA. CODATA recommended key values for thermodynamics 1977. J Chem Thermodynam. 1978;10:903–906. doi: 10.1016/0021-9614(78)90050-2. DOI
Benson SW. Thermochemical kinetics. 2. New York: Wiley; 1976.
Chemistry Web-book. http://webbook.NIST.gov. Accessed 18 March 2018.
Eigenmann HK, Golden DM, Benson SW. Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J Phys Chem. 1973;77:1687–1691. doi: 10.1021/j100632a019. DOI
Benson SW. Bond energies. J Chem Educ. 1965;42:502–558. doi: 10.1021/ed042p502. DOI
Marshalek AS, Sobechko IB, Velychkivska NI, Horak YuI, Dibrivnyi VM. Thermodynamic properties of furfural oxime. Herald Lviv Natl Polytech Univ. 2016;841:26–31.
Verevkin SP. Thermochemisytry of nitro compounds. Experimental standtd enthalpies of formation and improved group—additivity values. Thermochim Acta. 1997;307:17–25. doi: 10.1016/S0040-6031(97)00359-6. DOI
Smith MB, March MJ. Advanced organic chemistry. Reactions, mechanisms, and structure. 6. Hoboken: Wiley; 2007.
Bikelyte G, Härtel M, Stierstorfer J, Klapötke TM, Pimerzin AA, Verevkin SP. Benchmark properties of 2-, 3- and 4-nitrotoluene: evaluation of thermochemical data with complementary experimental and computational methods. J Chem Thermodyn. 2017;111:271–278. doi: 10.1016/j.jct.2017.03.029. DOI
Verevkin SP, Emel’yanenko VN, Diky V, Dorofeeva OV. Enthalpies of formation of nitromethane and nitrobenzene: new experiments vs. quantum chemical calculations. J Chem Thermodyn. 2014;73:163–170. doi: 10.1016/j.jct.2013.12.013. DOI
Miranda MS, Duarte DJR, Liebman JF. What is the enthalpy of formation of pyrazine-2-carboxylic acid? J Chem Thermodyn. 2016;97:261–263. doi: 10.1016/j.jct.2016.02.004. DOI
Khan MAS, Dey A, Sikder JAAK. Calculation of enthalpies of formation and band gaps of polymeric binders. RSC Adv. 2014;4:32840–32846. doi: 10.1039/C4RA02847C. DOI
Ribeiro Da Silva MAV, Monte MJS. The construction, testing and use of a new Knudsen effusion apparatus. Thermochim Acta. 1990;171:169–183. doi: 10.1016/0040-6031(90)87017-7. DOI
Krasulin AP, Kozyro AA, Kabo GY. Saturated vapor pressure of urea at 329–403 K. Zhurnal Prikl Him. 1987;6:104–108.
Nesmeyanov AN. Vapour pressure of chemical elements. Moscow: USSR Academy of Sciences Publishing; 1961.
De Kruif GG (1984) Thermochemistry and its application to chemical, biochemical system. In: Proceedings of NATO Advanced Study Institute Thermochemistry. Today; D Reidel
Kennard EH. Kinetic theory of gases with an Introduction to statistical mechanics. New York: Academic Press; 1938.
Lebedev YuA, Miroshnichenko EA. Vapor formation thermochemistry of organic compounds. Moscow: Nauka; 1981.
Sabbah R, An Xu-wu, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204. doi: 10.1016/S0040-6031(99)00009-X. DOI
Rossini FD. J Res Nat Bur Standards. 1931;6:37–49. doi: 10.6028/jres.006.002. DOI
Gerasimov YaI, Akishin PA (1984) Chemical thermodynamics (Experimental research). (In Russian)