Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31448331
PubMed Central
PMC6688872
DOI
10.1126/sciadv.aaw8337
PII: aaw8337
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Directly incorporating heteroatoms into the hexagonal lattice of graphene during growth has been widely used to tune its electrical properties with superior doping stability, uniformity, and scalability. However the introduction of scattering centers limits this technique because of reduced carrier mobilities and conductivities of the resulting material. Here, we demonstrate a rapid growth of graphitic nitrogen cluster-doped monolayer graphene single crystals on Cu foil with remarkable carrier mobility of 13,000 cm2 V-1 s-1 and a greatly reduced sheet resistance of only 130 ohms square-1. The exceedingly large carrier mobility with high n-doping level was realized by (i) incorporation of nitrogen-terminated carbon clusters to suppress the carrier scattering and (ii) elimination of all defective pyridinic nitrogen centers by oxygen etching. Our study opens up an avenue for the growth of high-mobility/conductivity doped graphene with tunable work functions for scalable graphene-based electronic and device applications.
Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P R China
Beijing Graphene Institute Beijing 100095 P R China
Center for Multidimensional Carbon Materials Ulsan 689 798 Republic of Korea
Zobrazit více v PubMed
Wang X., Li X., Zhang L., Yoon Y., Weber P. K., Wang H., Guo J., Dai H., N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009). PubMed
Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009). PubMed
Novoselov K. S., Fal’ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., A roadmap for graphene. Nature 490, 192–200 (2012). PubMed
Ferrari A. C., Bonaccorso F., Fal'ko V., Novoselov K. S., Roche S., Bøggild P., Borini S., Koppens F. H. L., Palermo V., Pugno N., Garrido J. A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhänen T., Morpurgo A., Coleman J. N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G. F., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A. N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G. M., Hee Hong B., Ahn J.-H., Min Kim J., Zirath H., van Wees B. J., van der Zant H., Occhipinti L., di Matteo A., Kinloch I. A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S. R. T., Tannock Q., Löfwander T., Kinaret J., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). PubMed
Shi Y., Kim K. K., Reina A., Hofmann M., Li L.-J., Kong J., Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689–2694 (2010). PubMed
Lohmann T., von Klitzing K., Smet J. H., Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009). PubMed
Das A., Pisana S., Chakraborty B., Piscanec S., Saha S. K., Waghmare U. V., Novoselov K. S., Krishnamurthy H. R., Geim A. K., Ferrari A. C., Sood A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). PubMed
Sun Z., Yan Z., Yao J., Beitler E., Zhu Y., Tour J. M., Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). PubMed
Usachov D., Vilkov O., Grüneis A., Haberer D., Fedorov A., Adamchuk V. K., Preobrajenski A. B., Dudin P., Barinov A., Oehzelt M., Laubschat C., Vyalikh D. V., Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011). PubMed
Qu L., Liu Y., Beak J. B., Dai L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010). PubMed
Lherbier A., Blase X., Niquet Y.-M., Triozon F., Roche S., Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101, 036808 (2008). PubMed
Liu H., Liu Y., Zhu D., Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011).
De S., Coleman J. N., Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010). PubMed
Schiros T., Nordlund D., Pálová L., Prezzi D., Zhao L., Kim K. S., Wurstbauer U., Gutiérrez C., Delongchamp D., Jaye C., Fischer D., Ogasawara H., Pettersson L. G. M., Reichman D. R., Kim P., Hybertsen M. S., Pasupathy A. N., Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12, 4025–4031 (2012). PubMed
Katsnelson M., Guinea F., Geim A. K., Scattering of electrons in graphene by clusters of impurities. Phys. Rev. B 79, 195426 (2009).
Yu J., Lee C.-H., Bouilly D., Han M., Kim P., Steigerwald M. L., Roy X., Nuckolls C., Patterning superatom dopants on transition metal dichalcogenides. Nano Lett. 16, 3385–3389 (2016). PubMed
Yu Q., Jauregui L. A., Wu W., Colby R., Tian J., Su Z., Cao H., Liu Z., Pandey D., Wei D., Chung T. F., Peng P., Guisinger N. P., Stach E. A., Bao J., Pei S.-S., Chen Y. P., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). PubMed
Lin L., Sun L., Zhang J., Sun J., Koh A. L., Peng H., Liu Z., Rapid growth of large single crystalline graphene via second passivation and multistage carbon supply. Adv. Mater. 28, 4671–4677 (2016). PubMed
Hao Y., Bharathi M. S., Wang L., Liu Y., Chen H., Nie S., Wang X., Chou H., Tan C., Fallahazad B., Ramanarayan H., Magnuson C. W., Tutuc E., Yakobson B. I., McCarty K. F., Zhang Y.-W., Kim P., Hone J., Colombo L., Ruoff R. S., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). PubMed
Wei W., Wei Z., Chen S., Qi X., Yang T., Hu J., Wang D., Wan L. J., Alvi S. F., Li L., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 52, 11755–11759 (2013). PubMed
Li X., Cai W., Colombo L., Ruoff R. S., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009). PubMed
Xue Y., Wu B., Jiang L., Guo Y., Huang L.-J., Chen J., Tan J., Geng D., Luo B., Hu W., Yu G., Liu Y., Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060–11063 (2012). PubMed
Zhang J., Li J., Wang Z., Wang X., Feng W., Zheng W., Cao W., Hu P. A., Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26, 2460–2466 (2014).
Lu Y.-F., Lo S.-T., Lin J.-C., Zhang W., Lu J.-Y., Liu F.-H., Tseng C.-M., Lee Y.-H., Liang C.-T., Li L.-J., Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7, 6522–6532 (2013). PubMed
Wu H. C., Abid M., Wu Y. C., Ó Coileáin C., Syrlybekov A., Han J. F., Heng C. L., Liu H., Abid M., Shvets I., Enhanced Shubnikov–de Haas oscillation in nitrogen-doped graphene. ACS Nano 9, 7207–7214 (2015). PubMed
He B., Ren Z., Qi C., Yan S., Wang Z., Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. J. Mater. Chem. C 3, 6172–6177 (2015).
Wang Z., Li P., Chen Y., Liu J., Tian H., Zhou J., Zhang W., Li Y., Synthesis of nitrogen-doped graphene by chemical vapour deposition using melamine as the sole solid source of carbon and nitrogen. J. Mater. Chem. C 2, 7396–7401 (2014).
Gao H., Song L., Guo W., Huang L., Yang D., Wang F., Zuo Y., Fan X., Liu Z., Gao W., Vajtai R., Hackenberg K., Ajayan P. M., A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon 50, 4476–4482 (2012).
Ho P.-H., Yeh Y.-C., Wang D.-Y., Li S.-S., Chen H.-A., Chung Y.-H., Lin C.-C., Wang W.-H., Chen C.-W., Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano 6, 6215–6221 (2012). PubMed
Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., Novoselov K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). PubMed
McCreary K. M., Pi K., Swartz A. G., Han W., Bao W., Lau C. N., Guinea F., Katsnelson M. I., Kawakami R. K., Effect of cluster formation on graphene mobility. Phys. Rev. B 81, 115453 (2010).
Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S., Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009). PubMed
Katsnelson M., Novoselov K., Geim A., Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).
Zhao L., He R., Rim K. T., Schiros T., Kim K. S., Zhou H., Gutiérrez C., Chockalingam S. P., Arguello C. J., Pálová L., Nordlund D., Hybertsen M. S., Reichman D. R., Heinz T. F., Kim P., Pinczuk A., Flynn G. W., Pasupathy A. N., Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999–1003 (2011). PubMed
Wang B., Ma X., Caffio M., Schaub R., Li W.-X., Size-selective carbon nanoclusters as precursors to the growth of epitaxial graphene. Nano Lett. 11, 424–430 (2011). PubMed
Cui Y., Fu Q., Zhang H., Bao X., Formation of identical-size graphene nanoclusters on Ru(0001). Chem. Commun. 47, 1470–1472 (2011). PubMed
Yuan Q., Gao J., Shu H., Zhao J., Chen X., Ding F., Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 134, 2970–2975 (2011). PubMed
Bae S., Kim H., Lee Y., Xu X., Park J. S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y. I., Kim Y. J., Kim K. S., Özyilmaz B., Ahn J. H., Hong B. H., Iijima S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). PubMed
Geng H.-Z., Kim K. K., So K. P., Lee Y. S., Chang Y., Lee Y. H., Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007). PubMed
Shytov A., Katsnelson M., Levitov L., Atomic collapse and quasi–Rydberg states in graphene. Phys. Rev. Lett. 99, 246802 (2007). PubMed
Wang Y., Wong D., Shytov A. V., Brar V. W., Choi S., Wu Q., Tsai H.-Z., Regan W., Zettl A., Kawakami R. K., Louie S. G., Levitov L. S., Crommie M. F., Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013). PubMed
Mao J., Jiang Y., Moldovan D., Li G., Watanabe K., Taniguchi T., Masir M. R., Peeters F. M., Andrei E. Y., Realization of a tunable artificial atom at a supercritically charged vacancy in graphene. Nat. Phys. 12, 545–549 (2016).
Jiang Y., Mao J., Moldovan D., Masir M. R., Li G., Watanabe K., Taniguchi T., Peeters F. M., Andrei E. Y., Tuning a circular p-n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 12, 1045–1049 (2017). PubMed
Chen S., Han Z., Elahi M. M., Habib K. M. M., Wang L., Wen B., Gao Y., Taniguchi T., Watanabe K., Hone J., Ghosh A. W., Dean C. R., Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016). PubMed
Han G. H., Güneş F., Bae J. J., Kim E. S., Chae S. J., Shin H.-J., Choi J.-Y., Pribat D., Lee Y. H., Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011). PubMed
Lin L., Li J., Ren H., Koh A. L., Kang N., Peng H., Xu H. Q., Liu Z., Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 10, 2922–2929 (2016). PubMed
Ma T., Ren W., Liu Z., Huang L., Ma L. P., Ma X., Zhang Z., Peng L. M., Cheng H. M., Repeated growth–etching–regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition. ACS Nano 8, 12806–12813 (2014). PubMed
Petrone N., Dean C. R., Meric I., van der Zande A. M., Huang P. Y., Wang L., Muller D., Shepard K. L., Hone J., Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012). PubMed
Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K. S., Roth S., Geim A. K., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). PubMed
Artyukhov V. I., Liu Y., Yakobson B. I., Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. U.S.A. 109, 15136–15140 (2012). PubMed PMC
Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M., Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016). PubMed
Li X., Magnuson C. W., Venugopal A., Tromp R. M., Hannon J. B., Vogel E. M., Colombo L., Ruoff R. S., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011). PubMed
Yan K., Wu D., Peng H., Jin L., Fu Q., Bao X., Liu Z., Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012). PubMed PMC
Li J., Lin L., Rui D., Li Q., Zhang J., Kang N., Zhang Y., Peng H., Liu Z., Xu H. Q., Electron–hole symmetry breaking in charge transport in nitrogen-doped graphene. ACS Nano 11, 4641–4650 (2017). PubMed
Jin Z., Yao J., Kittrell C., Tour J. M., Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4112–4117 (2011). PubMed
Zabet-Khosousi A., Zhao L., Pálová L., Hybertsen M. S., Reichman D. R., Pasupathy A. N., Flynn G. W., Segregation of sublattice domains in nitrogen-doped graphene. J. Am. Chem. Soc. 136, 1391–1397 (2014). PubMed
Lv R., Li Q., Botello-Méndez A. R., Hayashi T., Wang B., Berkdemir A., Hao Q., Elías A. L., Cruz-Silva R., Gutiérrez H. R., Kim Y. A., Muramatsu H., Zhu J., Endo M., Terrones H., Charlier J. C., Pan M., Terrones M., Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012). PubMed PMC
Novoselov K., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). PubMed
Bonaccorso F., Sun Z., Hasan T., Ferrari A., Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).
Li X., Zhu Y., Cai W., Borysiak M., Han B., Chen D., Piner R. D., Colombo L., Ruoff R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009). PubMed
Tang S., Wang H., Wang H. S., Sun Q., Zhang X., Cong C., Xie H., Liu X., Zhou X., Huang F., Chen X., Yu T., Ding F., Xie X., Jiang M., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). PubMed PMC
Yang W., Chen G., Shi Z., Liu C.-C., Zhang L., Xie G., Cheng M., Wang D., Yang R., Shi D., Watanabe K., Taniguchi T., Yao Y., Zhang Y., Zhang G., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013). PubMed