Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains

. 2019 Aug ; 5 (8) : eaaw8337. [epub] 20190809

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31448331

Directly incorporating heteroatoms into the hexagonal lattice of graphene during growth has been widely used to tune its electrical properties with superior doping stability, uniformity, and scalability. However the introduction of scattering centers limits this technique because of reduced carrier mobilities and conductivities of the resulting material. Here, we demonstrate a rapid growth of graphitic nitrogen cluster-doped monolayer graphene single crystals on Cu foil with remarkable carrier mobility of 13,000 cm2 V-1 s-1 and a greatly reduced sheet resistance of only 130 ohms square-1. The exceedingly large carrier mobility with high n-doping level was realized by (i) incorporation of nitrogen-terminated carbon clusters to suppress the carrier scattering and (ii) elimination of all defective pyridinic nitrogen centers by oxygen etching. Our study opens up an avenue for the growth of high-mobility/conductivity doped graphene with tunable work functions for scalable graphene-based electronic and device applications.

Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P R China

Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia

Beijing Graphene Institute Beijing 100095 P R China

Beijing Key Laboratory of Quantum Devices Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics Peking University Beijing 100871 P R China

Center for Multidimensional Carbon Materials Ulsan 689 798 Republic of Korea

Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 P R China

Center of Polymer and Carbon Materials Polish Academy of Sciences M Curie Sklodowskiej 34 Zabrze 41 819 Poland

China Fortune Land Development Industrial Investment Co Ltd Beijing P R China; School of Economics and Management Tsinghua University Beijing P R China

Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 P R China

Institute of Environmental Technology VŠB Technical University of Ostrava 17 Listopadu 15 Ostrava 708 33 Czech Republic

School of Materials Science and Engineering Ulsan National Institute of Science and Technology Ulsan 689 798 Republic of Korea

Soochow Institute for Energy and Materials Innovations College of Physics Optoelectronics and Energy Collaborative Innovation Center of Suzhou Nano Science and Technology Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P R China

State Key Laboratory of Precision Spectroscopy School of Physics and Material Science East China Normal University Shanghai 200062 P R China

Zobrazit více v PubMed

Wang X., Li X., Zhang L., Yoon Y., Weber P. K., Wang H., Guo J., Dai H., N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768–771 (2009). PubMed

Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009). PubMed

Novoselov K. S., Fal’ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., A roadmap for graphene. Nature 490, 192–200 (2012). PubMed

Ferrari A. C., Bonaccorso F., Fal'ko V., Novoselov K. S., Roche S., Bøggild P., Borini S., Koppens F. H. L., Palermo V., Pugno N., Garrido J. A., Sordan R., Bianco A., Ballerini L., Prato M., Lidorikis E., Kivioja J., Marinelli C., Ryhänen T., Morpurgo A., Coleman J. N., Nicolosi V., Colombo L., Fert A., Garcia-Hernandez M., Bachtold A., Schneider G. F., Guinea F., Dekker C., Barbone M., Sun Z., Galiotis C., Grigorenko A. N., Konstantatos G., Kis A., Katsnelson M., Vandersypen L., Loiseau A., Morandi V., Neumaier D., Treossi E., Pellegrini V., Polini M., Tredicucci A., Williams G. M., Hee Hong B., Ahn J.-H., Min Kim J., Zirath H., van Wees B. J., van der Zant H., Occhipinti L., di Matteo A., Kinloch I. A., Seyller T., Quesnel E., Feng X., Teo K., Rupesinghe N., Hakonen P., Neil S. R. T., Tannock Q., Löfwander T., Kinaret J., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). PubMed

Shi Y., Kim K. K., Reina A., Hofmann M., Li L.-J., Kong J., Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689–2694 (2010). PubMed

Lohmann T., von Klitzing K., Smet J. H., Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009). PubMed

Das A., Pisana S., Chakraborty B., Piscanec S., Saha S. K., Waghmare U. V., Novoselov K. S., Krishnamurthy H. R., Geim A. K., Ferrari A. C., Sood A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). PubMed

Sun Z., Yan Z., Yao J., Beitler E., Zhu Y., Tour J. M., Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010). PubMed

Usachov D., Vilkov O., Grüneis A., Haberer D., Fedorov A., Adamchuk V. K., Preobrajenski A. B., Dudin P., Barinov A., Oehzelt M., Laubschat C., Vyalikh D. V., Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011). PubMed

Qu L., Liu Y., Beak J. B., Dai L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010). PubMed

Lherbier A., Blase X., Niquet Y.-M., Triozon F., Roche S., Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101, 036808 (2008). PubMed

Liu H., Liu Y., Zhu D., Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011).

De S., Coleman J. N., Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010). PubMed

Schiros T., Nordlund D., Pálová L., Prezzi D., Zhao L., Kim K. S., Wurstbauer U., Gutiérrez C., Delongchamp D., Jaye C., Fischer D., Ogasawara H., Pettersson L. G. M., Reichman D. R., Kim P., Hybertsen M. S., Pasupathy A. N., Connecting dopant bond type with electronic structure in N-doped graphene. Nano Lett. 12, 4025–4031 (2012). PubMed

Katsnelson M., Guinea F., Geim A. K., Scattering of electrons in graphene by clusters of impurities. Phys. Rev. B 79, 195426 (2009).

Yu J., Lee C.-H., Bouilly D., Han M., Kim P., Steigerwald M. L., Roy X., Nuckolls C., Patterning superatom dopants on transition metal dichalcogenides. Nano Lett. 16, 3385–3389 (2016). PubMed

Yu Q., Jauregui L. A., Wu W., Colby R., Tian J., Su Z., Cao H., Liu Z., Pandey D., Wei D., Chung T. F., Peng P., Guisinger N. P., Stach E. A., Bao J., Pei S.-S., Chen Y. P., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011). PubMed

Lin L., Sun L., Zhang J., Sun J., Koh A. L., Peng H., Liu Z., Rapid growth of large single crystalline graphene via second passivation and multistage carbon supply. Adv. Mater. 28, 4671–4677 (2016). PubMed

Hao Y., Bharathi M. S., Wang L., Liu Y., Chen H., Nie S., Wang X., Chou H., Tan C., Fallahazad B., Ramanarayan H., Magnuson C. W., Tutuc E., Yakobson B. I., McCarty K. F., Zhang Y.-W., Kim P., Hone J., Colombo L., Ruoff R. S., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). PubMed

Wei W., Wei Z., Chen S., Qi X., Yang T., Hu J., Wang D., Wan L. J., Alvi S. F., Li L., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 52, 11755–11759 (2013). PubMed

Li X., Cai W., Colombo L., Ruoff R. S., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009). PubMed

Xue Y., Wu B., Jiang L., Guo Y., Huang L.-J., Chen J., Tan J., Geng D., Luo B., Hu W., Yu G., Liu Y., Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060–11063 (2012). PubMed

Zhang J., Li J., Wang Z., Wang X., Feng W., Zheng W., Cao W., Hu P. A., Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26, 2460–2466 (2014).

Lu Y.-F., Lo S.-T., Lin J.-C., Zhang W., Lu J.-Y., Liu F.-H., Tseng C.-M., Lee Y.-H., Liang C.-T., Li L.-J., Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7, 6522–6532 (2013). PubMed

Wu H. C., Abid M., Wu Y. C., Ó Coileáin C., Syrlybekov A., Han J. F., Heng C. L., Liu H., Abid M., Shvets I., Enhanced Shubnikov–de Haas oscillation in nitrogen-doped graphene. ACS Nano 9, 7207–7214 (2015). PubMed

He B., Ren Z., Qi C., Yan S., Wang Z., Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. J. Mater. Chem. C 3, 6172–6177 (2015).

Wang Z., Li P., Chen Y., Liu J., Tian H., Zhou J., Zhang W., Li Y., Synthesis of nitrogen-doped graphene by chemical vapour deposition using melamine as the sole solid source of carbon and nitrogen. J. Mater. Chem. C 2, 7396–7401 (2014).

Gao H., Song L., Guo W., Huang L., Yang D., Wang F., Zuo Y., Fan X., Liu Z., Gao W., Vajtai R., Hackenberg K., Ajayan P. M., A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon 50, 4476–4482 (2012).

Ho P.-H., Yeh Y.-C., Wang D.-Y., Li S.-S., Chen H.-A., Chung Y.-H., Lin C.-C., Wang W.-H., Chen C.-W., Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano 6, 6215–6221 (2012). PubMed

Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., Novoselov K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). PubMed

McCreary K. M., Pi K., Swartz A. G., Han W., Bao W., Lau C. N., Guinea F., Katsnelson M. I., Kawakami R. K., Effect of cluster formation on graphene mobility. Phys. Rev. B 81, 115453 (2010).

Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S., Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009). PubMed

Katsnelson M., Novoselov K., Geim A., Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

Zhao L., He R., Rim K. T., Schiros T., Kim K. S., Zhou H., Gutiérrez C., Chockalingam S. P., Arguello C. J., Pálová L., Nordlund D., Hybertsen M. S., Reichman D. R., Heinz T. F., Kim P., Pinczuk A., Flynn G. W., Pasupathy A. N., Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999–1003 (2011). PubMed

Wang B., Ma X., Caffio M., Schaub R., Li W.-X., Size-selective carbon nanoclusters as precursors to the growth of epitaxial graphene. Nano Lett. 11, 424–430 (2011). PubMed

Cui Y., Fu Q., Zhang H., Bao X., Formation of identical-size graphene nanoclusters on Ru(0001). Chem. Commun. 47, 1470–1472 (2011). PubMed

Yuan Q., Gao J., Shu H., Zhao J., Chen X., Ding F., Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 134, 2970–2975 (2011). PubMed

Bae S., Kim H., Lee Y., Xu X., Park J. S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y. I., Kim Y. J., Kim K. S., Özyilmaz B., Ahn J. H., Hong B. H., Iijima S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). PubMed

Geng H.-Z., Kim K. K., So K. P., Lee Y. S., Chang Y., Lee Y. H., Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129, 7758–7759 (2007). PubMed

Shytov A., Katsnelson M., Levitov L., Atomic collapse and quasi–Rydberg states in graphene. Phys. Rev. Lett. 99, 246802 (2007). PubMed

Wang Y., Wong D., Shytov A. V., Brar V. W., Choi S., Wu Q., Tsai H.-Z., Regan W., Zettl A., Kawakami R. K., Louie S. G., Levitov L. S., Crommie M. F., Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013). PubMed

Mao J., Jiang Y., Moldovan D., Li G., Watanabe K., Taniguchi T., Masir M. R., Peeters F. M., Andrei E. Y., Realization of a tunable artificial atom at a supercritically charged vacancy in graphene. Nat. Phys. 12, 545–549 (2016).

Jiang Y., Mao J., Moldovan D., Masir M. R., Li G., Watanabe K., Taniguchi T., Peeters F. M., Andrei E. Y., Tuning a circular p-n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 12, 1045–1049 (2017). PubMed

Chen S., Han Z., Elahi M. M., Habib K. M. M., Wang L., Wen B., Gao Y., Taniguchi T., Watanabe K., Hone J., Ghosh A. W., Dean C. R., Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016). PubMed

Han G. H., Güneş F., Bae J. J., Kim E. S., Chae S. J., Shin H.-J., Choi J.-Y., Pribat D., Lee Y. H., Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011). PubMed

Lin L., Li J., Ren H., Koh A. L., Kang N., Peng H., Xu H. Q., Liu Z., Surface engineering of copper foils for growing centimeter-sized single-crystalline graphene. ACS Nano 10, 2922–2929 (2016). PubMed

Ma T., Ren W., Liu Z., Huang L., Ma L. P., Ma X., Zhang Z., Peng L. M., Cheng H. M., Repeated growth–etching–regrowth for large-area defect-free single-crystal graphene by chemical vapor deposition. ACS Nano 8, 12806–12813 (2014). PubMed

Petrone N., Dean C. R., Meric I., van der Zande A. M., Huang P. Y., Wang L., Muller D., Shepard K. L., Hone J., Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012). PubMed

Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K. S., Roth S., Geim A. K., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). PubMed

Artyukhov V. I., Liu Y., Yakobson B. I., Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. U.S.A. 109, 15136–15140 (2012). PubMed PMC

Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M., Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016). PubMed

Li X., Magnuson C. W., Venugopal A., Tromp R. M., Hannon J. B., Vogel E. M., Colombo L., Ruoff R. S., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011). PubMed

Yan K., Wu D., Peng H., Jin L., Fu Q., Bao X., Liu Z., Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012). PubMed PMC

Li J., Lin L., Rui D., Li Q., Zhang J., Kang N., Zhang Y., Peng H., Liu Z., Xu H. Q., Electron–hole symmetry breaking in charge transport in nitrogen-doped graphene. ACS Nano 11, 4641–4650 (2017). PubMed

Jin Z., Yao J., Kittrell C., Tour J. M., Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4112–4117 (2011). PubMed

Zabet-Khosousi A., Zhao L., Pálová L., Hybertsen M. S., Reichman D. R., Pasupathy A. N., Flynn G. W., Segregation of sublattice domains in nitrogen-doped graphene. J. Am. Chem. Soc. 136, 1391–1397 (2014). PubMed

Lv R., Li Q., Botello-Méndez A. R., Hayashi T., Wang B., Berkdemir A., Hao Q., Elías A. L., Cruz-Silva R., Gutiérrez H. R., Kim Y. A., Muramatsu H., Zhu J., Endo M., Terrones H., Charlier J. C., Pan M., Terrones M., Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012). PubMed PMC

Novoselov K., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). PubMed

Bonaccorso F., Sun Z., Hasan T., Ferrari A., Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

Li X., Zhu Y., Cai W., Borysiak M., Han B., Chen D., Piner R. D., Colombo L., Ruoff R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009). PubMed

Tang S., Wang H., Wang H. S., Sun Q., Zhang X., Cong C., Xie H., Liu X., Zhou X., Huang F., Chen X., Yu T., Ding F., Xie X., Jiang M., Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat. Commun. 6, 6499 (2015). PubMed PMC

Yang W., Chen G., Shi Z., Liu C.-C., Zhang L., Xie G., Cheng M., Wang D., Yang R., Shi D., Watanabe K., Taniguchi T., Yao Y., Zhang Y., Zhang G., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...