Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test

. 2019 Aug 23 ; 12 (17) : . [epub] 20190823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31450816

Grantová podpora
19-22708S Czech Science Foundation
FAST-S-19-6002 Brno University of Technology

During the construction of concrete structures, it is often useful to know compressive strength at an early age. This is an amount of strength required for the safe removal of formwork, also known as stripping strength. It is certainly helpful to determine this strength non-destructively, i.e., without any invasive steps that would damage the structure. Second only to the ultrasonic pulse velocity test, the rebound hammer test is the most common NDT method currently used for this purpose. However, estimating compressive strength using general regression models can often yield inaccurate results. The experiment results show that the compressive strength of any concrete can be estimated using one's own newly created regression model. A traditionally constructed regression model can predict the strength value with 50% reliability, or when two-sided confidence bands are used, with 95% reliability. However, civil engineers usually work with the so-called characteristic value defined as a 5% quantile. Therefore, it appears suitable to adjust conventional methods in order to achieve a regression model with 95% one-sided reliability. This paper describes a simple construction of such a characteristic curve. The results show that the characteristic curve created for the concrete in question could be a useful tool even outside of practical applications.

Zobrazit více v PubMed

Mir A.E., Nehme S.G. Repeatability of the rebound surface hardness of concrete with alteration of concrete parameters. Constr. Build. Mater. 2017;131:317–326. doi: 10.1016/j.conbuildmat.2016.11.085. DOI

Bungey J.H., Millard S.G., Grantham M. Testing of Concrete in Structures. 4th ed. CRC Press; London, UK: 2006.

Ali-Benyahia K., Sbartaï Z.M., Breysse D., Kenai S., Ghrici M. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment. Case Stud. Constr. Mater. 2017;6:109–119. doi: 10.1016/j.cscm.2017.01.004. DOI

Handbook on Nondestructive Testing of Concrete. 2nd ed. CRC Press; Boca Raton, FL, USA: 2004.

Xu T., Li J. Assessing the spatial variability of the concrete by the rebound hammer test and compression test of drilled cores. Constr. Build. Mater. 2018;188:820–832. doi: 10.1016/j.conbuildmat.2018.08.138. DOI

Review of the Rebound Hammer Method Estimating Concrete Compressive Strength on Site; Proceedings of the International Conference on Architecture And Civil Engineering (ICAACE’14); Dubai, UAE. 25–26 December 2014; pp. 118–127. DOI

Breysse D. Nondestructive evaluation of concrete strength. Constr. Build. Mater. 2012;33:139–163. doi: 10.1016/j.conbuildmat.2011.12.103. DOI

Balayssac J.P., Garnier V. Non-Destructive Testing and Evaluation of Civil Engineering Structures. Elsevier; Kidlington, UK: 2018.

Breysse D., Martínez-Fernández J.L. Assessing concrete strength with rebound hammer. Mater. Struct. 2014;47:1589–1604. doi: 10.1617/s11527-013-0139-9. DOI

Jain A., Kathuria A., Kumar A., Verma Y., Murari K. Combined Use of Non-Destructive Tests for Assessment of Strength of Concrete in Structure. Procedia Eng. 2013;54:241–251. doi: 10.1016/j.proeng.2013.03.022. DOI

Szilágyi K., Borosnyói A., Zsigovics I. Rebound surface hardness of concrete. Constr. Build. Mater. 2011;25:2480–2487. doi: 10.1016/j.conbuildmat.2010.11.070. DOI

Schmidt E. Rebound Hammer for Concrete Testing. Schweiz Bauztg; Berlin, Germany: 1950.

Szilágyi K., Borosnyói A., Dobó K. Static indentation hardness testing of concrete: A long established method revived. Epa.-J. Silic. Based Compos. Mater. 2011;63:2–8. doi: 10.14382/epitoanyag-jsbcm.2011.1. DOI

Basu A., Aydin A. A method for normalization of Schmidt hammer rebound values. Int. J. Rock Mech. Min. Sci. 2004;41:1211–1214. doi: 10.1016/j.ijrmms.2004.05.001. DOI

Bilgin N., Dincer T., Copur H. The performance prediction of impact hammers from Schmidt hammer rebound values in Istanbul metro tunnel drivages. Tunn. Undergr. Space Technol. 2002;17:237–247. doi: 10.1016/S0886-7798(02)00009-3. DOI

Liang R., Hota G., Lei Y., Li Y., Stanislawski D., Jiang Y. Nondestructive Evaluation of Historic Hakka Rammed Earth Structures. Sustainability. 2013;5:298–315. doi: 10.3390/su5010298. DOI

Viles H., Goudie A., Grab S., Lalley J. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science. Earth Surf. Process. Landforms. 2011;36:320–333. doi: 10.1002/esp.2040. DOI

Bui Q.B. Assessing the Rebound Hammer Test for Rammed Earth Material. Sustainability. 2017;9:1904. doi: 10.3390/su9101904. DOI

Mohammed B.S., Azmi N.J., Abdullahi M. Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Constr. Build. Mater. 2011;25:1388–1397. doi: 10.1016/j.conbuildmat.2010.09.004. DOI

Original Schmidt Live Cue Cards. [(accessed on 25 June 2019)]; Available online: https://www.proceq.com/compare/schmidt-hammers/

ÚNMZ, Prague . ČSN 73 1373: Non-Destructive Testing of Concrete—Determination of Compressive Strength by Hardness Testing Methods. 1st ed. ÚNMZ; Prague, Czech Republic: 2011.

Kim J.K., Kim C.Y., Yi S.T., Lee Y. Effect of carbonation on the rebound number and compressive strength of concrete. Cem. Concr. Compos. 2009;31:139–144. doi: 10.1016/j.cemconcomp.2008.10.001. DOI

Panedpojaman P., Tonnayopas D. Rebound hammer test to estimate compressive strength of heat exposed concrete. Constr. Build. Mater. 2018;172:387–395. doi: 10.1016/j.conbuildmat.2018.03.179. DOI

Alwash M., Breysse D., Sbartaï Z.M., Szilágyi K., Borosnyói A. Factors affecting the reliability of assessing the concrete strength by rebound hammer and cores. Constr. Build. Mater. 2017;140:354–363. doi: 10.1016/j.conbuildmat.2017.02.129. DOI

Szilágyi K., Borosnyói A., Zsigovics I. Extensive statistical analysis of the variability of concrete rebound hardness based on a large database of 60years experience. Constr. Build. Mater. 2014;53:333–347. doi: 10.1016/j.conbuildmat.2013.11.113. DOI

Schmidt Rebound Hammers. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/compare/schmidt-hammers/

SilverSchmidt. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/uploads/tx_proceqproductcms/import_data/files/SilverSchmidt_Operating%20Instructions_English_high.pdf.

Original Schmidt Live. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/product/original-schmidt-live/

The SilverSchmidt Reference Curve. [(accessed on 21 June 2019)]; Available online: https://www.pcte.com.au/silver-schmidt-rebound-hammer.

CEN . EN 13791: Assessment of In-Situ Compressive Strength In Structures and Precast Concrete Components. CEN; Brussels, Belgium: 2006.

ASTM International . ASTM C805/C805M-18: Standard Test Method for Rebound Number of Hardened Concrete. ASTM International; West Conshohocken, PA, USA: 2018.

American Concrete Institute . ACI 228.1R-03: In-Place Methods to Estimate Concrete Strength. American Concrete Institute; Farmington Hills, MI, USA: 2003.

Chatterjee S., Simonoff J.S. Handbook of Regression Analysis. Wiley; Hoboken, NJ, USA: 2013.

Pedhazur E.J., Kerlinger F.N. Multiple Regression in Behavioral Research. 2nd ed. Holt, Rinehart and Winston; New York, NY, USA: 1982.

Sika Company. [(accessed on 21 June 2019)]; Available online: https://cze.sika.com/

Stachema. [(accessed on 21 June 2019)]; Available online: https://prisadydobetonu.stachema.cz/

CEN . EN 12350-2: Testing Fresh Concrete—Part 2: Slump-Test. 1st ed. CEN; Brussels, Belgium: 2009.

CEN . EN 12350-6: Testing Fresh Concrete—Part 6: Density. CEN; Brussels, Belgium: 2009.

CEN . EN 12350-7: Testing Fresh Concrete—Part 7: Air Content—Pressure Methods. CEN; Brussels, Belgium: 2009.

CEN . EN 12390-3: Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. CEN; Brussels, Belgium: 2009.

CEN . EN 196-2: Method of Testing Cement—Part 2: Chemical Analysis of Cement. CEN; Brussels, Belgium: 2013.

CEN . EN 196-6: Methods of Testing Cement—Part 6: Determination Of Fineness. CEN; Brussels, Belgium: 2018.

CEN . EN 196-8: Methods of Testing Cement—Part 8: Heat of Hydration—Solution Method. CEN; Brussels, Belgium: 2010.

Pucinotti R. Reinforced concrete structure. Constr. Build. Mater. 2015;75:331–341. doi: 10.1016/j.conbuildmat.2014.11.023. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...