Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-22708S
Czech Science Foundation
FAST-S-19-6002
Brno University of Technology
PubMed
31450816
PubMed Central
PMC6747579
DOI
10.3390/ma12172705
PII: ma12172705
Knihovny.cz E-zdroje
- Klíčová slova
- SilverSchmidt, compressive strength, concrete, non-destructive testing, rebound hammer,
- Publikační typ
- časopisecké články MeSH
During the construction of concrete structures, it is often useful to know compressive strength at an early age. This is an amount of strength required for the safe removal of formwork, also known as stripping strength. It is certainly helpful to determine this strength non-destructively, i.e., without any invasive steps that would damage the structure. Second only to the ultrasonic pulse velocity test, the rebound hammer test is the most common NDT method currently used for this purpose. However, estimating compressive strength using general regression models can often yield inaccurate results. The experiment results show that the compressive strength of any concrete can be estimated using one's own newly created regression model. A traditionally constructed regression model can predict the strength value with 50% reliability, or when two-sided confidence bands are used, with 95% reliability. However, civil engineers usually work with the so-called characteristic value defined as a 5% quantile. Therefore, it appears suitable to adjust conventional methods in order to achieve a regression model with 95% one-sided reliability. This paper describes a simple construction of such a characteristic curve. The results show that the characteristic curve created for the concrete in question could be a useful tool even outside of practical applications.
Zobrazit více v PubMed
Mir A.E., Nehme S.G. Repeatability of the rebound surface hardness of concrete with alteration of concrete parameters. Constr. Build. Mater. 2017;131:317–326. doi: 10.1016/j.conbuildmat.2016.11.085. DOI
Bungey J.H., Millard S.G., Grantham M. Testing of Concrete in Structures. 4th ed. CRC Press; London, UK: 2006.
Ali-Benyahia K., Sbartaï Z.M., Breysse D., Kenai S., Ghrici M. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment. Case Stud. Constr. Mater. 2017;6:109–119. doi: 10.1016/j.cscm.2017.01.004. DOI
Handbook on Nondestructive Testing of Concrete. 2nd ed. CRC Press; Boca Raton, FL, USA: 2004.
Xu T., Li J. Assessing the spatial variability of the concrete by the rebound hammer test and compression test of drilled cores. Constr. Build. Mater. 2018;188:820–832. doi: 10.1016/j.conbuildmat.2018.08.138. DOI
Review of the Rebound Hammer Method Estimating Concrete Compressive Strength on Site; Proceedings of the International Conference on Architecture And Civil Engineering (ICAACE’14); Dubai, UAE. 25–26 December 2014; pp. 118–127. DOI
Breysse D. Nondestructive evaluation of concrete strength. Constr. Build. Mater. 2012;33:139–163. doi: 10.1016/j.conbuildmat.2011.12.103. DOI
Balayssac J.P., Garnier V. Non-Destructive Testing and Evaluation of Civil Engineering Structures. Elsevier; Kidlington, UK: 2018.
Breysse D., Martínez-Fernández J.L. Assessing concrete strength with rebound hammer. Mater. Struct. 2014;47:1589–1604. doi: 10.1617/s11527-013-0139-9. DOI
Jain A., Kathuria A., Kumar A., Verma Y., Murari K. Combined Use of Non-Destructive Tests for Assessment of Strength of Concrete in Structure. Procedia Eng. 2013;54:241–251. doi: 10.1016/j.proeng.2013.03.022. DOI
Szilágyi K., Borosnyói A., Zsigovics I. Rebound surface hardness of concrete. Constr. Build. Mater. 2011;25:2480–2487. doi: 10.1016/j.conbuildmat.2010.11.070. DOI
Schmidt E. Rebound Hammer for Concrete Testing. Schweiz Bauztg; Berlin, Germany: 1950.
Szilágyi K., Borosnyói A., Dobó K. Static indentation hardness testing of concrete: A long established method revived. Epa.-J. Silic. Based Compos. Mater. 2011;63:2–8. doi: 10.14382/epitoanyag-jsbcm.2011.1. DOI
Basu A., Aydin A. A method for normalization of Schmidt hammer rebound values. Int. J. Rock Mech. Min. Sci. 2004;41:1211–1214. doi: 10.1016/j.ijrmms.2004.05.001. DOI
Bilgin N., Dincer T., Copur H. The performance prediction of impact hammers from Schmidt hammer rebound values in Istanbul metro tunnel drivages. Tunn. Undergr. Space Technol. 2002;17:237–247. doi: 10.1016/S0886-7798(02)00009-3. DOI
Liang R., Hota G., Lei Y., Li Y., Stanislawski D., Jiang Y. Nondestructive Evaluation of Historic Hakka Rammed Earth Structures. Sustainability. 2013;5:298–315. doi: 10.3390/su5010298. DOI
Viles H., Goudie A., Grab S., Lalley J. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science. Earth Surf. Process. Landforms. 2011;36:320–333. doi: 10.1002/esp.2040. DOI
Bui Q.B. Assessing the Rebound Hammer Test for Rammed Earth Material. Sustainability. 2017;9:1904. doi: 10.3390/su9101904. DOI
Mohammed B.S., Azmi N.J., Abdullahi M. Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Constr. Build. Mater. 2011;25:1388–1397. doi: 10.1016/j.conbuildmat.2010.09.004. DOI
Original Schmidt Live Cue Cards. [(accessed on 25 June 2019)]; Available online: https://www.proceq.com/compare/schmidt-hammers/
ÚNMZ, Prague . ČSN 73 1373: Non-Destructive Testing of Concrete—Determination of Compressive Strength by Hardness Testing Methods. 1st ed. ÚNMZ; Prague, Czech Republic: 2011.
Kim J.K., Kim C.Y., Yi S.T., Lee Y. Effect of carbonation on the rebound number and compressive strength of concrete. Cem. Concr. Compos. 2009;31:139–144. doi: 10.1016/j.cemconcomp.2008.10.001. DOI
Panedpojaman P., Tonnayopas D. Rebound hammer test to estimate compressive strength of heat exposed concrete. Constr. Build. Mater. 2018;172:387–395. doi: 10.1016/j.conbuildmat.2018.03.179. DOI
Alwash M., Breysse D., Sbartaï Z.M., Szilágyi K., Borosnyói A. Factors affecting the reliability of assessing the concrete strength by rebound hammer and cores. Constr. Build. Mater. 2017;140:354–363. doi: 10.1016/j.conbuildmat.2017.02.129. DOI
Szilágyi K., Borosnyói A., Zsigovics I. Extensive statistical analysis of the variability of concrete rebound hardness based on a large database of 60years experience. Constr. Build. Mater. 2014;53:333–347. doi: 10.1016/j.conbuildmat.2013.11.113. DOI
Schmidt Rebound Hammers. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/compare/schmidt-hammers/
SilverSchmidt. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/uploads/tx_proceqproductcms/import_data/files/SilverSchmidt_Operating%20Instructions_English_high.pdf.
Original Schmidt Live. [(accessed on 21 June 2019)]; Available online: https://www.proceq.com/product/original-schmidt-live/
The SilverSchmidt Reference Curve. [(accessed on 21 June 2019)]; Available online: https://www.pcte.com.au/silver-schmidt-rebound-hammer.
CEN . EN 13791: Assessment of In-Situ Compressive Strength In Structures and Precast Concrete Components. CEN; Brussels, Belgium: 2006.
ASTM International . ASTM C805/C805M-18: Standard Test Method for Rebound Number of Hardened Concrete. ASTM International; West Conshohocken, PA, USA: 2018.
American Concrete Institute . ACI 228.1R-03: In-Place Methods to Estimate Concrete Strength. American Concrete Institute; Farmington Hills, MI, USA: 2003.
Chatterjee S., Simonoff J.S. Handbook of Regression Analysis. Wiley; Hoboken, NJ, USA: 2013.
Pedhazur E.J., Kerlinger F.N. Multiple Regression in Behavioral Research. 2nd ed. Holt, Rinehart and Winston; New York, NY, USA: 1982.
Sika Company. [(accessed on 21 June 2019)]; Available online: https://cze.sika.com/
Stachema. [(accessed on 21 June 2019)]; Available online: https://prisadydobetonu.stachema.cz/
CEN . EN 12350-2: Testing Fresh Concrete—Part 2: Slump-Test. 1st ed. CEN; Brussels, Belgium: 2009.
CEN . EN 12350-6: Testing Fresh Concrete—Part 6: Density. CEN; Brussels, Belgium: 2009.
CEN . EN 12350-7: Testing Fresh Concrete—Part 7: Air Content—Pressure Methods. CEN; Brussels, Belgium: 2009.
CEN . EN 12390-3: Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. CEN; Brussels, Belgium: 2009.
CEN . EN 196-2: Method of Testing Cement—Part 2: Chemical Analysis of Cement. CEN; Brussels, Belgium: 2013.
CEN . EN 196-6: Methods of Testing Cement—Part 6: Determination Of Fineness. CEN; Brussels, Belgium: 2018.
CEN . EN 196-8: Methods of Testing Cement—Part 8: Heat of Hydration—Solution Method. CEN; Brussels, Belgium: 2010.
Pucinotti R. Reinforced concrete structure. Constr. Build. Mater. 2015;75:331–341. doi: 10.1016/j.conbuildmat.2014.11.023. DOI