Nitrosobenzene: Reagent for the Mitsunobu Esterification Reaction

. 2019 Mar 31 ; 4 (3) : 5012-5018. [epub] 20190307

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31459682

Nitrosobenzene has been demonstrated to participate in the Mitsunobu reaction in an analogous manner to dialkyl azodicarboxylates. The protocol using nitrosobenzene and triphenylphosphine (1:1) under mild conditions (0 °C) provides the ester derivatives of aliphatic and aromatic acids using various alcohols in moderate yield and with good enantioselectivity, giving the desired products predominantly with an inversion of configuration. The proposed mechanism, which is analogous to that observed using dialkyl azodicarboxylates, involves a nitrosobenzene-triphenylphosphine adduct and an alkoxytriphenylphosphonium ion and was supported by density functional theory calculations, 31P NMR spectroscopy, and experiments conducted with isotopically labeled substrates.

Zobrazit více v PubMed

Fletcher S. The Mitsunobu reaction in the 21st century. Org. Chem. Front. 2015, 2, 739–752. 10.1039/C5QO00016E. DOI

Swamy K. C. K.; Kumar N. N. B.; Balaraman E.; Kumar K. V. P. P. Mitsunobu and Related Reactions: Advances and Applications. Chem. Rev. 2009, 109, 2551–2651. 10.1021/cr800278z. PubMed DOI

But T. Y. S.; Toy P. H. The Mitsunobu reaction: origin, mechanism, improvements, and applications. Chem. Asian J. 2007, 2, 1340–1355. 10.1002/asia.200700182. PubMed DOI

Mitsunobu O.; Masaaki Y. Preparation of Esters of Carboxylic and Phosphoric Acid via Quaternary Phosphonium Salts. Bull. Chem. Soc. Jpn. 1967, 40, 2380–2382. 10.1246/bcsj.40.2380. DOI

Reynolds A. J.; Kassiou M. Recent advances in the Mitsunobu reaction. Modifications and applications to biologically active molecules. Curr. Org. Chem. 2009, 13, 1610–1632. 10.2174/138527209789578144. DOI

Dodge J. A.; Jones S. A. Advances in the Mitsunobu reaction for the stereochemical inversion of hindered secondary alcohols. Recent Res. Dev. Org. Chem. 1997, 1, 273–283.

Camp D.; von Itzstein M.; Jenkins I. D. The mechanism of the first step of the Mitsunobu reaction. Tetrahedron 2015, 71, 4946–4948. 10.1016/j.tet.2015.05.099. DOI

Brunn E.; Huisgen R. Struktur und Reaktivität des Betains aus Triphenylphosphin und Azodicarbonsäureester. Angew. Chem. 1969, 81, 534–536. 10.1002/ange.19690811412. DOI

Morrison D. Notes: Reactions of Alkyl Phosphites with Diethyl Azodicarboxylate. J. Org. Chem. 1958, 23, 1072–1074. 10.1021/jo01101a619. DOI

Swamy K. C. K.; Kumar K. P.; Kumar N. N. B. Further Characterization of Mitsunobu-Type Intermediates in the Reaction of Dialkyl Azodicarboxylates with P(III) Compounds. J. Org. Chem. 2006, 71, 1002–1008. 10.1021/jo051997x. PubMed DOI

Camp D.; Jenkins I. D. The mechanism of the Mitsunobu esterification reaction. Part II. The involvement of (acyloxy)alkoxyphosphoranes. J. Org. Chem. 1989, 54, 3049–3054. 10.1021/jo00274a017. DOI

Varasi M.; Walker K. A. M.; Maddox M. L. A revised mechanism for the Mitsunobu reaction. J. Org. Chem. 1987, 52, 4235–4238. 10.1021/jo00228a016. DOI

Grochowski E.; Hilton B. D.; Kupper R. J.; Michejda C. J. Mechanism of the triphenylphosphine and diethyl azodicarboxylate induced dehydration reactions (Mitsunobu reaction). The central role of pentavalent phosphorus intermediates. J. Am. Chem. Soc. 1982, 104, 6876–6877. 10.1021/ja00388a110. DOI

Hughes A. B.; Sleebs M. M. Total Synthesis of Bassiatin and Its Stereoisomers: Novel Divergent Behavior of Substrates in Mitsunobu Cyclizations. J. Org. Chem. 2005, 70, 3079–3088. 10.1021/jo047761v. PubMed DOI

McNulty J.; Capretta A.; Laritchev V.; Dyck J.; Robertson A. J. The Role of Acyloxyphosphonium Ions and the Stereochemical Influence of Base in the Phosphorane-Mediated Esterification of Alcohols. Angew. Chem., Int. Ed. 2003, 42, 4051–4054. 10.1002/anie.200351209. PubMed DOI

Smith A. B.; Safonov I. G.; Corbett R. M. Total Syntheses of (+)-Zampanolide and (+)-Dactylolide Exploiting a Unified Strategy. J. Am. Chem. Soc. 2002, 124, 11102–11113. 10.1021/ja020635t. PubMed DOI

Ahn C.; DeShong P. An Approach to the Stereoselective Synthesis of syn- and anti-1,3-Diol Derivatives. Retention of Configuration in the Mitsunobu Reaction. J. Org. Chem. 2002, 67, 1754–1759. 10.1021/jo001525c. PubMed DOI

Kauer J. C. Ethyl azodicarboxylate. Org. Synth. 2003, 4, 411.10.1002/0471264180.os900.12. DOI

Berger A.; Wehrstedt K. D. Azodicarboxylates: Explosive properties and DSC measurements. J. Loss Prev. Process Ind. 2010, 23, 734–739. 10.1016/j.jlp.2010.06.019. DOI

Beddoe R. H.; Sneddon H. F.; Denton R. M. The catalytic Mitsunobu reaction: a critical analysis of the current state-of-the-art. Org. Biomol. Chem. 2018, 16, 7774–7781. 10.1039/C8OB01929K. PubMed DOI

Hirose D.; Gazvoda M.; Košmrlj J.; Taniguchi T. Systematic Evaluation of 2-Arylazocarboxylates and 2-Arylazocarboxamides as Mitsunobu Reagents. J. Org. Chem. 2018, 83, 4712–4729. 10.1021/acs.joc.8b00486. PubMed DOI

Hirose D.; Gazvoda M.; Košmrlj J.; Taniguchi T. Advances and mechanistic insight on the catalytic Mitsunobu reaction using recyclable azo reagents. Chem. Sci. 2016, 7, 5148–5159. 10.1039/C6SC00308G. PubMed DOI PMC

Hirose D.; Taniguchi T.; Ishibashi H. Recyclable Mitsunobu Reagents: Catalytic Mitsunobu Reactions with an Iron Catalyst and Atmospheric Oxygen. Angew. Chem., Int. Ed. 2013, 52, 4613–4617. 10.1002/anie.201300153. PubMed DOI

But T. Y. S.; Toy P. H. Organocatalytic Mitsunobu Reactions. J. Am. Chem. Soc. 2006, 128, 9636–9637. 10.1021/ja063141v. PubMed DOI

März M.; Chudoba J.; Kohout M.; Cibulka R. Photocatalytic esterification under Mitsunobu reaction conditions mediated by flavin and visible light. Org. Biomol. Chem. 2017, 15, 1970–1975. 10.1039/C6OB02770A. PubMed DOI

März M.; Kohout M.; Neveselý T.; Chudoba J.; Prukała D.; Niziński S.; Sikorski M.; Burdziński G.; Cibulka R. Azodicarboxylate-free esterification with triphenylphosphine mediated by flavin and visible light: method development and stereoselectivity control. Org. Biomol. Chem. 2018, 16, 6809–6817. 10.1039/C8OB01822G. PubMed DOI

Taniguchi T.; Hirose D.; Ishibashi H. Esterification via Iron-Catalyzed Activation of Triphenylphosphine with Air. ACS Catal. 2011, 1, 1469–1474. 10.1021/cs2003824. DOI

Dyck J.; Zavorine S.; Robertson A. J.; Capretta A.; Larichev V.; Britten J.; McNulty J. Dimethylmalonyltrialkylphosphoranes: probing the steric effect on phosphorus and its stereochemical consequence in esterification reactions of chiral secondary alcohols. J. Organomet. Chem. 2005, 690, 2548–2552. 10.1016/j.jorganchem.2004.10.046. DOI

McNulty J.; Capretta A.; Laritchev V.; Dyck J.; Robertson A. J. Dimethylmalonyltrialkylphosphoranes: New General Reagents for Esterification Reactions Allowing Controlled Inversion or Retention of Configuration on Chiral Alcohols. J. Org. Chem. 2003, 68, 1597–1600. 10.1021/jo026639y. PubMed DOI

Tsunoda T.; Nagino C.; Oguri M.; Itô S. Mitsunobu-type alkylation with active methine compounds. Tetrahedron Lett. 1996, 37, 2459–2462. 10.1016/0040-4039(96)00318-8. DOI

Tsunoda T.; Ozaki F.; Itô S. Novel reactivity of stabilized methylenetributylphosphorane: A new mitsunobu reagent. Tetrahedron Lett. 1994, 35, 5081–5082. 10.1016/S0040-4039(00)73326-0. DOI

Khursan V. S.; Shamukaev V. A.; Chainikova E. M.; Khursan S. L.; Safiullin R. L. Kinetics and mechanism of the nitrosobenzene deoxygenation by trivalent phosphorous compounds. Russ. Chem. Bull. 2013, 62, 2477–2486. 10.1007/s11172-013-0359-8. DOI

Cadogan J. I. G. Reduction of nitro- and nitroso-compounds by tervalent phosphorus reagents. Q. Rev., Chem. Soc. 1968, 22, 222–251. 10.1039/qr9682200222. DOI

Nykaza T. V.; Ramirez A.; Harrison T. S.; Luzung M. R.; Radosevich A. T. Biphilic Organophosphorus-Catalyzed Intramolecular Csp2–H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. J. Am. Chem. Soc. 2018, 140, 3103–3113. 10.1021/jacs.7b13803. PubMed DOI PMC

Cadogan J. I. G.; Cameron-Wood M.; Mackie R. K.; Searle R. J. G. 896. The reactivity of organophosphorus compounds. Part XIX. Reduction of nitro-compounds by triethyl phosphite: a convenient new route to carbazoles, indoles, indazoles, triazoles, and related compounds. J. Chem. Soc. 1965, 4831–4837. 10.1039/jr9650004831. DOI

Schenk S.; Weston J.; Anders E. Density Functional Investigation of the Mitsunobu Reaction. J. Am. Chem. Soc. 2005, 127, 12566–12576. 10.1021/ja052362i. PubMed DOI

Castiñeira Reis M.; Marín-Luna M.; Silva López C.; Faza O. N. Mechanism of the Molybdenum-Mediated Cadogan Reaction. ACS Omega 2018, 3, 7019–7026. 10.1021/acsomega.8b01278. PubMed DOI PMC

Hansch C.; Leo A.; Taft R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. 10.1021/cr00002a004. DOI

Chainikova E. M.; Safiullin R. L. Reactivity of arylnitroso oxides to triphenylphosphine. Kinet. Catal. 2009, 50, 527–529. 10.1134/S0023158409040089. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...