• This record comes from PubMed

New Design of the Electrophoretic Part of CLARITY Technology for Confocal Light Microscopy of Rat and Human Brains

. 2019 Aug 29 ; 9 (9) : . [epub] 20190829

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
Q35, Q41, P31 and 260388/SVV/2019 Grantová Agentura, Univerzita Karlova
18-04902S and GBP304/12/G069 Grantová Agentura České Republiky

BACKGROUND: CLARITY is a method of rendering postmortem brain tissue transparent using acrylamide-based hydrogels so that this tissue could be further used for immunohistochemistry, molecular biology, or gross anatomical studies. Published papers using the CLARITY method have included studies on human brains suffering from Alzheimer's disease using mouse spinal cords as animal models for multiple sclerosis. METHODS: We modified the original design of the Chung CLARITY system by altering the electrophoretic flow-through cell, the shape of the platinum electrophoresis electrodes and their positions, as well as the cooling and recirculation system, so that it provided a greater effect and can be used in any laboratory. RESULTS: The adapted CLARITY system is assembled from basic laboratory components, in contrast to the original design. The modified CLARITY system was tested both on rat brain stained with a rabbit polyclonal anti-Iba-1 for microglial cells and on human nucleus accumbens stained with parvalbumin and tyrosine hydroxylase for visualization of specific neurons by confocal laser scanning microscopy. CONCLUSIONS: Our design has the advantage of simplicity, functional robustness, and minimal requirement for specialized additional items for the construction of the CLARITY apparatus.

See more in PubMed

Chung K., Wallace J., Kim S.Y., Kalyanasundaram S., Andalman A.S., Davidson T.J., Mirzabekov J.J., Zalocusky K.A., Mattis J., Denisin A.K., et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332–337. doi: 10.1038/nature12107. PubMed DOI PMC

Chung K., Deisseroth K. Clarity for mapping the nervous system. Nat. Methods. 2013;10:508–513. doi: 10.1038/nmeth.2481. PubMed DOI

Tomer R., Ye L., Hsueh B., Deisseroth K. Advanced clarity for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 2014;9:1682–1697. doi: 10.1038/nprot.2014.123. PubMed DOI PMC

Epp J.R., Niibori Y., Hsiang H.L., Mercaldo V., Deisseroth K., Josselyn S.A., Frankland P.W. Optimization of clarity for clearing whole-brain and other intact organs. eNeuro. 2015;2:1–15. doi: 10.1523/ENEURO.0022-15.2015. PubMed DOI PMC

Liu A.K.L., Hurry M.E.D., Ng O.T.W., DeFelice J., Lai H.M., Pearce R.K.B., Wong G.T.C., Chang R.C.C., Gentleman S.M. Bringing clarity to the human brain: Visualization of lewy pathology in three dimensions. Neuropathol. Appl. Neurobiol. 2016;42:573–587. doi: 10.1111/nan.12293. PubMed DOI PMC

Kim S.Y., Cho J.H., Murray E., Bakh N., Choi H., Ohn K., Ruelas L., Hubbert A., McCue M., Vassallo S.L., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. USA. 2015;112:E6274–E6283. doi: 10.1073/pnas.1510133112. PubMed DOI PMC

Poguzhelskaya E., Artamonov D., Bolshakova A., Vlasova O., Bezprozvanny I. Simplified method to perform clarity imaging. Mol. Neurodegener. 2014;9:1–5. doi: 10.1186/1750-1326-9-19. PubMed DOI PMC

Phillips J., Laude A., Lightowlers R., Morris C.M., Turnbull D.M., Lax N.Z. Development of passive clarity and immunofluorescent labelling of multiple proteins in human cerebellum: Understanding mechanisms of neurodegeneration in mitochondrial disease. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep26013. PubMed DOI PMC

Gao R.X., Asano S.M., Upadhyayula S., Pisarev I., Milkie D.E., Liu T.L., Singh V., Graves A., Huynh G.H., Zhao Y.X., et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363:8302. doi: 10.1126/science.aau8302. PubMed DOI PMC

Woo J., Lee M., Seo J.M., Park H.S., Cho Y.E. Optimization of the optical transparency of rodent tissues by modified pact-based passive clearing. Exp. Mol. Med. 2016;48:1–10. doi: 10.1038/emm.2016.105. PubMed DOI PMC

Unnersjo-Jess D., Scott L., Blom H., Brismar H. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue. Kidney Int. 2016;89:243–247. doi: 10.1038/ki.2015.308. PubMed DOI

McCollum L.A., McCullumsmith R.E., Roberts R.C. Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia. Brain Struct. Funct. 2016;221:4451–4458. doi: 10.1007/s00429-015-1174-9. PubMed DOI

Ito D., Tanaka K., Suzuki S., Dembo T., Fukuuchi Y. Enhanced expression of iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–1215. doi: 10.1161/01.STR.32.5.1208. PubMed DOI

Donat C.K., Scott G., Gentleman S.M., Sastre M. Microglial activation in traumatic brain injury. Front. Aging Neurosci. 2017;9:1–20. doi: 10.3389/fnagi.2017.00208. PubMed DOI PMC

Jeong H.K., Ji K., Min K., Joe E.H. Brain inflammation and microglia: Facts and misconceptions. Exp. Neurobiol. 2013;22:59–67. doi: 10.5607/en.2013.22.2.59. PubMed DOI PMC

Lee E., Choi J., Jo Y., Kim J.Y., Jang Y.J., Lee H.M., Kim S.Y., Lee H.J., Cho K., Jung N., et al. Act-presto: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3d) imaging. Sci. Rep. 2016;6:1–13. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...