New Design of the Electrophoretic Part of CLARITY Technology for Confocal Light Microscopy of Rat and Human Brains
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Q35, Q41, P31 and 260388/SVV/2019
Grantová Agentura, Univerzita Karlova
18-04902S and GBP304/12/G069
Grantová Agentura České Republiky
PubMed
31470513
PubMed Central
PMC6770398
DOI
10.3390/brainsci9090218
PII: brainsci9090218
Knihovny.cz E-resources
- Keywords
- CLARITY, brain, electrophoresis, instrumentation, microscopy,
- Publication type
- Journal Article MeSH
BACKGROUND: CLARITY is a method of rendering postmortem brain tissue transparent using acrylamide-based hydrogels so that this tissue could be further used for immunohistochemistry, molecular biology, or gross anatomical studies. Published papers using the CLARITY method have included studies on human brains suffering from Alzheimer's disease using mouse spinal cords as animal models for multiple sclerosis. METHODS: We modified the original design of the Chung CLARITY system by altering the electrophoretic flow-through cell, the shape of the platinum electrophoresis electrodes and their positions, as well as the cooling and recirculation system, so that it provided a greater effect and can be used in any laboratory. RESULTS: The adapted CLARITY system is assembled from basic laboratory components, in contrast to the original design. The modified CLARITY system was tested both on rat brain stained with a rabbit polyclonal anti-Iba-1 for microglial cells and on human nucleus accumbens stained with parvalbumin and tyrosine hydroxylase for visualization of specific neurons by confocal laser scanning microscopy. CONCLUSIONS: Our design has the advantage of simplicity, functional robustness, and minimal requirement for specialized additional items for the construction of the CLARITY apparatus.
See more in PubMed
Chung K., Wallace J., Kim S.Y., Kalyanasundaram S., Andalman A.S., Davidson T.J., Mirzabekov J.J., Zalocusky K.A., Mattis J., Denisin A.K., et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332–337. doi: 10.1038/nature12107. PubMed DOI PMC
Chung K., Deisseroth K. Clarity for mapping the nervous system. Nat. Methods. 2013;10:508–513. doi: 10.1038/nmeth.2481. PubMed DOI
Tomer R., Ye L., Hsueh B., Deisseroth K. Advanced clarity for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 2014;9:1682–1697. doi: 10.1038/nprot.2014.123. PubMed DOI PMC
Epp J.R., Niibori Y., Hsiang H.L., Mercaldo V., Deisseroth K., Josselyn S.A., Frankland P.W. Optimization of clarity for clearing whole-brain and other intact organs. eNeuro. 2015;2:1–15. doi: 10.1523/ENEURO.0022-15.2015. PubMed DOI PMC
Liu A.K.L., Hurry M.E.D., Ng O.T.W., DeFelice J., Lai H.M., Pearce R.K.B., Wong G.T.C., Chang R.C.C., Gentleman S.M. Bringing clarity to the human brain: Visualization of lewy pathology in three dimensions. Neuropathol. Appl. Neurobiol. 2016;42:573–587. doi: 10.1111/nan.12293. PubMed DOI PMC
Kim S.Y., Cho J.H., Murray E., Bakh N., Choi H., Ohn K., Ruelas L., Hubbert A., McCue M., Vassallo S.L., et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. USA. 2015;112:E6274–E6283. doi: 10.1073/pnas.1510133112. PubMed DOI PMC
Poguzhelskaya E., Artamonov D., Bolshakova A., Vlasova O., Bezprozvanny I. Simplified method to perform clarity imaging. Mol. Neurodegener. 2014;9:1–5. doi: 10.1186/1750-1326-9-19. PubMed DOI PMC
Phillips J., Laude A., Lightowlers R., Morris C.M., Turnbull D.M., Lax N.Z. Development of passive clarity and immunofluorescent labelling of multiple proteins in human cerebellum: Understanding mechanisms of neurodegeneration in mitochondrial disease. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep26013. PubMed DOI PMC
Gao R.X., Asano S.M., Upadhyayula S., Pisarev I., Milkie D.E., Liu T.L., Singh V., Graves A., Huynh G.H., Zhao Y.X., et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363:8302. doi: 10.1126/science.aau8302. PubMed DOI PMC
Woo J., Lee M., Seo J.M., Park H.S., Cho Y.E. Optimization of the optical transparency of rodent tissues by modified pact-based passive clearing. Exp. Mol. Med. 2016;48:1–10. doi: 10.1038/emm.2016.105. PubMed DOI PMC
Unnersjo-Jess D., Scott L., Blom H., Brismar H. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue. Kidney Int. 2016;89:243–247. doi: 10.1038/ki.2015.308. PubMed DOI
McCollum L.A., McCullumsmith R.E., Roberts R.C. Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia. Brain Struct. Funct. 2016;221:4451–4458. doi: 10.1007/s00429-015-1174-9. PubMed DOI
Ito D., Tanaka K., Suzuki S., Dembo T., Fukuuchi Y. Enhanced expression of iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–1215. doi: 10.1161/01.STR.32.5.1208. PubMed DOI
Donat C.K., Scott G., Gentleman S.M., Sastre M. Microglial activation in traumatic brain injury. Front. Aging Neurosci. 2017;9:1–20. doi: 10.3389/fnagi.2017.00208. PubMed DOI PMC
Jeong H.K., Ji K., Min K., Joe E.H. Brain inflammation and microglia: Facts and misconceptions. Exp. Neurobiol. 2013;22:59–67. doi: 10.5607/en.2013.22.2.59. PubMed DOI PMC
Lee E., Choi J., Jo Y., Kim J.Y., Jang Y.J., Lee H.M., Kim S.Y., Lee H.J., Cho K., Jung N., et al. Act-presto: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3d) imaging. Sci. Rep. 2016;6:1–13. PubMed PMC