A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza

. 2019 Sep ; 5 (9) : 933-939. [epub] 20190902

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid31477892
Odkazy

PubMed 31477892
DOI 10.1038/s41477-019-0501-1
PII: 10.1038/s41477-019-0501-1
Knihovny.cz E-zdroje

During arbuscular mycorrhizal symbiosis, colonization of the root is modulated in response to the physiological status of the plant, with regulation occurring locally and systemically. Here, we identify differentially expressed genes encoding CLAVATA3/ESR-related (CLE) peptides that negatively regulate colonization levels by modulating root strigolactone content. CLE function requires a receptor-like kinase, SUNN; thus, a CLE-SUNN-strigolactone feedback loop is one avenue through which the plant modulates colonization levels.

Zobrazit více v PubMed

Kobae, Y. et al. Plant Cell Physiol. 59, 544–553 (2018). DOI

Akiyama, K., Matsuzaki, K.-I. & Hayashi, H. Nature 435, 824–827 (2005). DOI

Besserer, A. et al. PLoS Biol. 4, e226 (2006). DOI

Genre, A. et al. New Phytol. 198, 190–202 (2013). DOI

Oldroyd, G. E. D. Nat. Rev. Microbiol. 11, 252–263 (2013). DOI

Menge, J. A. et al. New Phytol. 80, 575–578 (1978). DOI

Breuillin, F. et al. Plant J. 64, 1002–1017 (2010). DOI

Liu, W. et al. Plant Cell 23, 3853–3865 (2011). DOI

Kretzschmar, T. et al. Nature 483, 341–344 (2012). DOI

Vierheilig, H. et al. Soil Biol. Biochem. 32, 589–595 (2000). DOI

Vierheilig, H. J. Plant Physiol. 161, 339–341 (2004). DOI

Meixner, C. et al. Planta 222, 709–715 (2005). DOI

Solaiman, M. Z. et al. J. Plant Res. 113, 443–448 (2000). DOI

Morandi, D. et al. Mycorrhiza 10, 37–42 (2000). DOI

Wang, C., Reid, J. B. & Foo, E. Front. Plant Sci. 9, 988 (2018). DOI

Tsikou, D. et al. Science 362, 233–236 (2018). DOI

Sasaki, T. et al. Nat. Commun. 5, 4983 (2014). DOI

Fletcher, J. C. et al. Science 283, 1911–1914 (1999). DOI

Hastwell, A. H. et al. Sci. Rep. 7, 9384 (2017). DOI

Goad, D. M., Zhu, C. & Kellogg, E. A. New Phytol. 216, 605–616 (2016). DOI

Hirakawa, Y. & Sawa, S. Curr. Opin. Plant Biol. 51, 81–87 (2019). DOI

Funayama-Noguchi, S. et al. J. Plant Res. 124, 155–163 (2011). DOI

Handa, Y. et al. Plant Cell Physiol. 56, 1490–1511 (2015). DOI

Le Marquer, M., Bécard, G. & Frei dit Frey, N. New Phytol. 222, 1030–1042 (2019). DOI

Javot, H. et al. Proc. Natl Acad. Sci. USA 104, 1720–1725 (2007). DOI

Mortier, V. et al. Plant Physiol. 153, 222–237 (2010). DOI

Liao, P. et al. Biotechnol. Adv. 34, 697–713 (2016). DOI

van Zeijl, A. et al. BMC Plant Biol. 15, 260 (2015). DOI

Seto, Y. & Yamaguchi, S. Curr. Opin. Plant Biol. 21, 1–6 (2014). DOI

Gomez-Roldan, V. et al. Nature 455, 189–194 (2008). DOI

Tokunaga, T., Hayashi, H. & Akiyama, K. Phytochemistry 111, 91–97 (2015). DOI

Thuring, J. W. J. F., Nefkens, G. H. L. & Zwanenburg, B. J. Agric. Food Chem. 45, 2278–2283 (1997). DOI

Scaffidi, A. et al. Plant Physiol. 165, 1221–1232 (2014). DOI

Nimchuk, Z. L. et al. Development 142, 1043–1049 (2015). DOI

Schnabel, E. et al. Plant Mol. Biol. 58, 809–822 (2005). DOI

Foo, E., Ferguson, B. J. & Reid, J. B. Ann. Bot. 113, 1037–1045 (2014). DOI

Morandi, D. et al. Mycorrhiza 19, 435–441 (2009). DOI

López-Ráez, J. A. et al. J. Plant Physiol. 168, 294–297 (2011). DOI

Somssich, M. et al. Development 143, 3238–3248 (2016). DOI

Wang, G., Zhang, G. & Wu, M. Front Plant Sci. 6, 1211 (2015). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...