Speech Comprehension and Its Relation to Other Auditory Parameters in Elderly Patients With Tinnitus

. 2019 ; 11 () : 219. [epub] 20190821

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31496946

Deteriorated speech comprehension is a common manifestation of the age-related decline of auditory functions (presbycusis). It could be assumed that when presbycusis is accompanied by tinnitus, general hearing functions, and particularly comprehension of speech in quiet and speech in noise (SIN), will be significantly affected. In this study, speech comprehension ability and other parameters of auditory function were assessed in elderly subjects with (T, n = 25) and without (NT, n = 26) tinnitus, aiming for examination of both peripheral and central auditory processing. Apart from high-frequency audiograms in quiet and in background noise, speech recognition thresholds in silence or in competitive babble noise, and the ability to understand temporally gated speech (GS), we measured also sensitivity to frequency modulation (FM) and interaural delay, gap detection thresholds (GDT), or the difference limens of intensity. The results show that in elderly participants matched by age (mean ages around 68 years), cognitive status (median MoCA scores around 27), and hearing thresholds [median pure-tone averages (PTA) around 16 dB hearing loss (HL)], tinnitus per se has little influence on speech comprehension. The tinnitus patients also show similar GDT, sensitivity to interaural intensity difference, and sensitivity to FM as the NT subjects. Despite these similarities, nevertheless, significant differences in auditory processing have been found in the tinnitus participants: a worse ability to detect tones in noise, a higher sensitivity to intensity changes, and a higher sensitivity to interaural time differences. Additional correlation analyses further revealed that speech comprehension in the T subjects is dependent on the sensitivity to temporal modulation and interaural time delay (ITD), while these correlations are weak and non-significant in the NT subjects. Therefore, despite similarities in average speech comprehension and several other parameters of auditory function, elderly people with tinnitus exhibit different auditory processing, particularly at a suprathreshold level. The results also suggest that speech comprehension ability of elderly tinnitus patients relies more on temporal features of the sound stimuli, especially under difficult conditions, compared to elderly people without tinnitus.

Zobrazit více v PubMed

Ahlf S., Tziridis K., Korn S., Strohmeyer I., Schulze H. (2012). Predisposition for and prevention of subjective tinnitus development. PLoS One 7:e44519. 10.1371/journal.pone.0044519 PubMed DOI PMC

Andersson G., Eriksson J., Lundh L. G., Lyttkens L. (2000). Tinnitus and cognitive interference: a stroop paradigm study. J. Speech Lang. Hear. Res. 43, 1168–1173. 10.1044/jslhr.4305.1168 PubMed DOI

Bauer C. A., Turner J. G., Caspary D. M., Myers K. S., Brozoski T. J. (2008). Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J. Neurosci. Res. 86, 2564–2578. 10.1002/jnr.21699 PubMed DOI PMC

Borland E., Nägga K., Nilsson P. M., Minthon L., Nilsson E. D., Palmqvist S. (2017). The montreal cognitive assessment: normative data from a large swedish population-based cohort. J. Alzheimers Dis. 59, 893–901. 10.3233/JAD-170203 PubMed DOI PMC

Boyen K., Başkent D., van Dijk P. (2015). The gap detection test: can it be used to diagnose tinnitus? Ear Hear. 36, e138–e145. 10.1097/aud.0000000000000156 PubMed DOI PMC

Brozoski T., Wisner K., Randall M., Caspary D. (2019). Chronic sound-induced tinnitus and auditory attention in animals. Neuroscience 407, 200–212. 10.1016/j.neuroscience.2018.10.013 PubMed DOI

Campolo J., Lobarinas E., Salvi R. (2013). Does tinnitus “fill in” the silent gaps? Noise Health 15, 398–405. 10.4103/1463-1741.121232 PubMed DOI PMC

Degeest S., Corthals P., Dhooge I., Keppler H. (2016). The impact of tinnitus characteristics and associated variables on tinnitus-related handicap. J. Laryngol. Otol. 130, 25–31. 10.1017/s0022215115002716 PubMed DOI

Dlouhá O., Vokřál J., Černý L. (2012). Test of sentence intelligibility in babble noise in persons with hearing disorder. Otorhinolaryngol. Phoniatr. 61, 240–244.

Dornhoffer J., Danner C., Mennemeier M., Blake D., Garcia-Rill E. (2006). Arousal and attention deficits in patients with tinnitus. Int. Tinnitus J. 12, 9–16. PubMed

Durai M., Sanders M., Kobayashi K., Searchfield G. D. (2019). Auditory streaming and prediction in tinnitus sufferers. Ear Hear. 40, 345–357. 10.1097/aud.0000000000000620 PubMed DOI

Eggermont J. J. (1990). On the pathophysiology of tinnitus; a review and a peripheral model. Hear. Res. 48, 111–123. 10.1016/0378-5955(90)90202-z PubMed DOI

Eggermont J. J., Tass P. A. (2015). Maladaptive neural synchrony in tinnitus: origin and restoration. Front. Neurol. 6:29. 10.3389/fneur.2015.00029 PubMed DOI PMC

Epp B., Hots J., Verhey J. L., Schaette R. (2012). Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J. Acoust. Soc. Am. 132, EL196–EL201. 10.1121/1.4740462 PubMed DOI

Festen J. M., Plomp R. (1983). Relations between auditory functions in impaired hearing. J. Acoust. Soc. Am. 73, 652–662. 10.1121/1.388957 PubMed DOI

Fournier P., Hébert S. (2013). Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear. Res. 295, 16–23. 10.1016/j.heares.2012.05.011 PubMed DOI

Füllgrabe C., Moore B. C., Stone M. A. (2015). Age-group differences in speech identification despite matched audiometrically normal hearing: contributions from auditory temporal processing and cognition. Front. Aging Neurosci. 6:347. 10.3389/fnagi.2014.00347 PubMed DOI PMC

Galazyuk A., Hébert S. (2015). Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front. Neurol. 6:88. 10.3389/fneur.2015.00088 PubMed DOI PMC

Gilles A., Schlee W., Rabau S., Wouters K., Fransen E., Van de Heyning P. (2016). Decreased speech-in-noise understanding in young adults with tinnitus. Front. Neurosci. 10:288. 10.3389/fnins.2016.00288 PubMed DOI PMC

Goldstein B., Shulman A. (1999). Central auditory speech test findings in individuals with subjective idiopathic tinnitus. Int. Tinnitus J. 5, 16–19. PubMed

Gordon-Salant S., Fitzgibbons P. J. (1993). Temporal factors and speech recognition performance in young and elderly listeners. J. Speech Lang. Hear. Res. 36, 1276–1285. 10.1044/jshr.3606.1276 PubMed DOI

Grassi M., Borella E. (2013). The role of auditory abilities in basic mechanisms of cognition in older adults. Front. Aging Neurosci. 5:59. 10.3389/fnagi.2013.00059 PubMed DOI PMC

Guest H., Munro K. J., Prendergast G., Howe S., Plack C. J. (2017). Tinnitus with a normal audiogram: relation to noise exposure but no evidence for cochlear synaptopathy. Hear. Res. 344, 265–274. 10.1016/j.heares.2016.12.002 PubMed DOI PMC

Guest H., Munro K. J., Prendergast G., Millman R. E., Plack C. J. (2018). Impaired speech perception in noise with a normal audiogram: no evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hear. Res. 364, 142–151. 10.1016/j.heares.2018.03.008 PubMed DOI PMC

Huang C. Y., Chung K. C., Chen H. C., Shen Y. J., Wu J. L. (2007). Relationships among speech perception, self-rated tinnitus loudness and disability in tinnitus patients with normal pure-tone thresholds of hearing. ORL J. Otorhinolaryngol. Relat. Spec. 69, 25–29. 10.1159/000096713 PubMed DOI

Jilek M., Šuta D., Syka J. (2014). Reference hearing thresholds in an extended frequency range as a function of age. J. Acoust. Soc. Am. 136, 1821–1830. 10.1121/1.4894719 PubMed DOI

Keppler H., Degeest S., Dhooge I. (2017). The relationship between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions. J. Laryngol. Otol. 131, 1017–1025. 10.1017/S0022215117001803 PubMed DOI

Krauss P., Tziridis K., Schilling A., Schulze H. (2018). Cross-modal stochastic resonance as a universal principle to enhance sensory processing. Front. Neurosci. 12:578. 10.3389/fnins.2018.00578 PubMed DOI PMC

Kujawa S. G., Liberman M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 330, 191–199. 10.1016/j.heares.2015.02.009 PubMed DOI PMC

Mazelová J., Popelar J., Syka J. (2003). Auditory function in presbycusis: peripheral vs. central changes. Exp. Gerontol. 38, 87–94. 10.1016/s0531-5565(02)00155-9 PubMed DOI

McCormack A., Edmondson-Jones M., Somerset S., Hall D. (2016). A systematic review of the reporting of tinnitus prevalence and severity. Hear. Res. 337, 70–79. 10.1016/j.heares.2016.05.009 PubMed DOI

Mehraei G., Hickox A. E., Bharadwaj H. M., Goldberg H., Verhulst S., Liberman M. C., et al. . (2016). Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J. Neurosci. 36, 3755–3764. 10.1523/JNEUROSCI.4460-15.2016 PubMed DOI PMC

Meikle M. B., Vernon J., Johnson R. M. (1984). The perceived severity of tinnitus. Some observations concerning a large population of tinnitus clinic patients. Otolaryngol. Head Neck Surg. 92, 689–696. 10.1177/019459988409200617 PubMed DOI

Menze B. H., Kelm B. M., Masuch R., Himmelreich U., Bachert P., Petrich W., et al. . (2009). A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10:213. 10.1186/1471-2105-10-213 PubMed DOI PMC

Mitchell C. R., Creedon T. A. (1995). Psychophysical tuning curves in subjects with tinnitus suggest outer hair cell lesions. Otolaryngol. Head Neck Surg. 113, 223–233. 10.1016/s0194-5998(95)70110-9 PubMed DOI

Moon I. J., Won J. H., Kang H. W., Kim D. H., An Y.-H., Shim H. J. (2015). Influence of tinnitus on auditory spectral and temporal resolution and speech perception in tinnitus patients. J. Neurosci. 35, 14260–14269. 10.1523/JNEUROSCI.5091-14.2015 PubMed DOI PMC

Nascimento I. P., Almeida A. A., Diniz Junior J., Martins M. L., Freitas T. M., Rosa M. R. (2018). Tinnitus evaluation: relation among pitch matching and loudness, visual analog scale and tinnitus handicap inventory. Braz. J. Otorhinolaryngol. 10.1016/j.bjorl.2018.05.006 PubMed DOI PMC

Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., et al. . (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699. 10.1111/j.1532-5415.2005.53221.x PubMed DOI

Newman C. W., Jacobson G. P., Spitzer J. B. (1996). Development of the tinnitus handicap inventory. Arch. Otolaryngol. Head Neck Surg. 122, 143–148. 10.1001/archotol.1996.01890140029007 PubMed DOI

Newman C. W., Sandridge S. A., Jacobson G. P. (1998). Psychometric adequacy of the Tinnitus Handicap Inventory (THI) for evaluating treatment outcome. J. Am. Acad. Audiol. 9, 153–160. PubMed

Newman C. W., Wharton J. A., Shivapuja B. G., Jacobson G. P. (1994). Relationships among psychoacoustic judgments, speech understanding ability and self-perceived handicap in tinnitus subjects. Audiology 33, 47–60. 10.3109/00206099409072954 PubMed DOI

Pan T., Tyler R. S., Ji H., Coelho C., Gehringer A. K., Gogel S. A. (2009). The relationship between tinnitus pitch and the audiogram. Int. J. Audiol. 48, 277–294. 10.1080/14992020802581974 PubMed DOI

Profant O., Jilek M., Bures Z., Vencovsky V., Kucharova D., Svobodova V., et al. . (2019). Functional age-related changes within the human auditory system studied by audiometric examination. Front. Aging Neurosci. 11:26. 10.3389/fnagi.2019.00026 PubMed DOI PMC

Profant O., Tintěra J., Balogová Z., Ibrahim I., Jilek M., Syka J. (2015). Functional changes in the human auditory cortex in ageing. PLoS One 10:e0116692. 10.1371/journal.pone.0116692 PubMed DOI PMC

Ralli M., Greco A., De Vincentiis M., Sheppard A., Cappelli G., Neri I., et al. . (2019). Tone-in-noise detection deficits in elderly patients with clinically normal hearing. Am. J. Otolaryngol. 40, 1–9. 10.1016/j.amjoto.2018.09.012 PubMed DOI PMC

Riedl D., Rumpold G., Schmidt A., Zorowka P. G., Bliem H. R., Moschen R. (2015). The influence of tinnitus acceptance on the quality of life and psychological distress in patients with chronic tinnitus. Noise Health 17, 374–381. 10.4103/1463-1741.165068 PubMed DOI PMC

Rossiter S., Stevens C., Walker G. (2006). Tinnitus and its effect on working memory and attention. J. Speech Lang. Hear. Res. 49, 150–160. 10.1044/1092-4388(2006/012) PubMed DOI

Roth T. N., Hanebuth D., Probst R. (2011). Prevalence of age-related hearing loss in Europe: a review. Eur. Arch. Otorhinolaryngol. 268, 1101–1107. 10.1007/s00405-011-1597-8 PubMed DOI PMC

Rybalko N., Chumak T., Bureš Z., Popelář J., Šuta D., Syka J. (2015). Development of the acoustic startle response in rats and its change after early acoustic trauma. Behav. Brain Res. 286, 212–221. 10.1016/j.bbr.2015.02.046 PubMed DOI

Rybalko N., Mitrovic D., Šuta D., Bureš Z., Popelář J., Syka J. (2019). Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol. Behav. 210:112620. 10.1016/j.physbeh.2019.112620 PubMed DOI

Ryu I. S., Ahn J. H., Lim H. W., Joo K. Y., Chung J. W. (2012). Evaluation of masking effects on speech perception in patients with unilateral chronic tinnitus using the hearing in noise test. Otol Neurotol. 33, 1472–1476. 10.1097/MAO.0b013e31826dbcc4 PubMed DOI

Sanches S. G. G., Sanchez T. G., Carvallo R. M. M. (2010). Influence of cochlear function on auditory temporal resolution in tinnitus patients. Audiol. Neurootol. 15, 273–281. 10.1159/000272939 PubMed DOI

Santurette S., Dau T. (2012). Relating binaural pitch perception to the individual listener’s auditory profile. J. Acoust. Soc. Am. 131, 2968–2986. 10.1121/1.3689554 PubMed DOI

Schaette R., McAlpine D. (2011). Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci. 31, 13452–13457. 10.1523/JNEUROSCI.2156-11.2011 PubMed DOI PMC

Schweder T., Spjøtvoll E. (1982). Plots of P-values to evaluate many tests simultaneously. Biometrika 69, 493–502. 10.1093/biomet/69.3.493 DOI

Seeman M. (1960). Česká Slovní Audiometrie. Praha: Státní zdravotnické nakladatelství.

Shore S. E., Roberts L. E., Langguth B. (2016). Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat. Rev. Neurol. 12, 150–160. 10.1038/nrneurol.2016.12 PubMed DOI PMC

Strobl C. (2005). Statistical sources of variable selection bias in classification trees based on the gini index. Tech. Rep. SFB 386:420.

Tan C. M., Lecluyse W., McFerran D., Meddis R. (2013). Tinnitus and patterns of hearing loss. J. Assoc. Res. Otolaryngol. 14, 275–282. 10.1007/s10162-013-0371-6 PubMed DOI PMC

Tyler R. S., Summerfield Q., Wood E. J., Fernandes M. A. (1982). Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. J. Acoust. Soc. Am. 72, 740–752. 10.1121/1.388254 PubMed DOI

Vielsmeier V., Kreuzer P. M., Haubner F., Steffens T., Semmler P. R., Kleinjung T., et al. . (2016). Speech comprehension difficulties in chronic tinnitus and its relation to hyperacusis. Front. Aging Neurosci. 8:293. 10.3389/fnagi.2016.00293 PubMed DOI PMC

Weisz N., Hartmann T., Dohrmann K., Schlee W., Norena A. (2006). High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear. Res. 222, 108–114. 10.1016/j.heares.2006.09.003 PubMed DOI

Wu C., Martel D. T., Shore S. E. (2016). Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J. Neurosci. 36, 2068–2073. 10.1523/JNEUROSCI.3960-15.2016 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...