Magnetic Lignosulfonate-Supported Pd Complex: Renewable Resource-Derived Catalyst for Aqueous Suzuki-Miyaura Reaction

. 2019 Sep 03 ; 4 (10) : 14234-14241. [epub] 20190822

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31508546

A novel strategy is described to prepare magnetic Pd nanocatalyst by conjugating lignin with Fe3O4 nanoparticles via activation of calcium lignosulfonate, followed by combination with Fe3O4 nanoparticles. Tethering 5-amino-1H-tetrazole to calcium lignosulfonate-magnetite hybrid through 3-chloropropyl triethoxysilane enabled coordination of Pd salt with Fe3O4-lignosulfonate@5-amino-1H-tetrazole. The underlying changes of the lignosulfonate are identified, and the structural morphology of attained Fe3O4-lignosulfonate@5-amino-1H-tetrazole-Pd(II) (FLA-Pd) is characterized by Fourier transform infrared, thermogravimetry differential thermal analysis, energy-dispersive spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer (VSM). The synthesized FLA-Pd displayed high activity for phosphine-free C(sp2)-C(sp2) coupling in water, and the catalyst could be reused for seven successive cycles.

Zobrazit více v PubMed

Kai D.; Tan M. J.; Chee P. L.; Chua Y. K.; Yap Y. L.; Loh X. J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016, 18, 1175–1200. 10.1039/c5gc02616d. DOI

Sen S.; Patil S.; Argyropoulos D. S. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 2015, 17, 4862–4887. 10.1039/c5gc01066g. DOI

Upton B. M.; Kasko A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 2015, 116, 2275–2306. 10.1021/acs.chemrev.5b00345. PubMed DOI

Thakur V. K.; Thakur M. K.; Raghavan P.; Kessler M. R. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem. Eng. 2014, 2, 1072–1092. 10.1021/sc500087z. DOI

Verma S.; Nadagouda M.; Varma R. S. Visible light-mediated and water-assisted selective hydrodeoxygenation of lignin-derived guaiacol to cyclohexanol. Green Chem 2019, 21, 1253.10.1039/C8GC03951H. DOI

Kim J.-Y.; Johnston P. A.; Lee J. H.; Smith R. G.; Brown R. C. Improving lignin homogeneity and functionality via ethanolysis for production of antioxidants. ACS Sustainable Chem. Eng. 2019, 7, 3520–3526. 10.1021/acssuschemeng.8b05769. DOI

Larrañeta E.; Imízcoz M.; Toh J. X.; Irwin N. J.; Ripolin A.; Perminova A.; Domínguez-Robles J.; Rodríguez A.; Donnelly R. F. Synthesis and characterization of lignin hydrogels for potential applications as drug eluting antimicrobial coatings for medical materials. ACS Sustainable Chem. Eng. 2018, 6, 9037–9046. 10.1021/acssuschemeng.8b01371. PubMed DOI PMC

Ge Y.; Li Z. Application of lignin and its derivatives in aqdsorption of heavy metal ions in water: a review. ACS Sustainable Chem. Eng. 2018, 6, 7181–7192. 10.1021/acssuschemeng.8b01345. DOI

Culebras M.; Sanchis M. J.; Beaucamp A.; Carsí M.; Kandola B. K.; Horrocks A. R.; Panzetti G.; Birkinshaw C.; Collins M. N. Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor. Green Chem. 2018, 20, 4461–4472. 10.1039/c8gc01577e. DOI

Zong E.; Huang G.; Liu X.; Lei W.; Jiang S.; Ma Z.; Wang J.; Song P. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. J. Mater. Chem. A 2018, 6, 9971–9983. 10.1039/c8ta01449c. DOI

Liu Y.; Huang X.; Han K.; Dai Y.; Zhang X.; Zhao Y. High-performance lignin-based water-soluble macromolecular photoinitiator for the fabrication of hybrid hydrogel. ACS Sustainable Chem. Eng. 2019, 7, 4004–4011. 10.1021/acssuschemeng.8b05357. DOI

Farhat W.; Venditti R.; Mignard N.; Taha M.; Becquart F.; Ayoub A. Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. Int. J. Biol. Macromol. 2017, 104, 564–575. 10.1016/j.ijbiomac.2017.06.037. PubMed DOI

Jiang C.; He H.; Yao X.; Yu P.; Zhou L.; Jia D. The aggregation structure regulation of lignin by chemical modification and its effect on the property of lignin/styrene-butadiene rubber composites. J. Appl. Polym. Sci. 2018, 135, 45759.10.1002/app.45759. DOI

Xu C.; Nasrollahzadeh M.; Sajjadi M.; Maham M.; Luque R.; Puente-Santiago A. R. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renewable Sustainable Energy Rev. 2019, 112, 195–252. 10.1016/j.rser.2019.03.062. DOI

Baig R. B. N.; Varma R. S. Copper on chitosan: a recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chem. 2013, 15, 1839–1843. 10.1039/c3gc40401c. DOI

Baig R. B. N.; Varma R. S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013, 49, 752–770. 10.1039/c2cc35663e. PubMed DOI

Nasrollahzadeh M.; Issaabadi Z.; Sajadi S. M. Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water. RSC Adv. 2018, 8, 27631–27644. 10.1039/c8ra04368j. PubMed DOI PMC

Manzoli M.; Gaudino E. C.; Cravotto G.; Tabasso S.; Baig R. B. N.; Colacino E.; Varma R. S. Microwave-assisted reductive amination with aqueous ammonia: sustainable pathway using recyclable magnetic nickel-based nanocatalyst. ACS Sustainable Chem. Eng. 2019, 7, 5963–5974. 10.1021/acssuschemeng.8b06054. DOI

Baig R. B. N.; Verma S.; Varma R. S.; Nadagouda M. N. Magnetic Fe@gC3N4: a photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustainable Chem. Eng. 2016, 4, 1661–1664. 10.1021/acssuschemeng.5b01610. DOI

Gawande M. B.; Branco P. S.; Varma R. S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 2013, 42, 3371–3393. 10.1039/c3cs35480f. PubMed DOI

Nasir Baig R. B.; Varma R. S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem. 2013, 15, 398–417. 10.1039/c2gc36455g. DOI

Nasrollahzadeh M.; Issaabadi Z.; Tohidi M. M.; Sajadi S. M. Recent progress in application of graphene supported metal nanoparticles in C-C and C-X coupling reactions. Chem. Rec. 2018, 18, 165–229. 10.1002/tcr.201700022. PubMed DOI

Kou J.; Saha A.; Bennett-Stamper C.; Varma R. S. Inside-out core-shell architecture: controllable fabrication of Cu2O@Cu with high activity for the Sonogashira coupling reaction. Chem. Commun. 2012, 48, 5862–5864. 10.1039/c2cc31577g. PubMed DOI

Feizi Mohazzab B.; Jaleh B.; Issaabadi Z.; Nasrollahzadeh M.; Varma R. S. Stainless steel mesh-GO/Pd NPs: catalytic applications of Suzuki-Miyaura and Stille coupling reactions in eco-friendly media. Green Chem. 2019, 21, 3319–3327. 10.1039/c9gc00889f. DOI

Modak S.; Gangwar M. K.; Nageswar Rao M.; Madasu M.; Kalita A. C.; Dorcet V.; Shejale M. A.; Butcher R. J.; Ghosh P. Fluoride-free Hiyama coupling by palladium abnormal N-heterocyclic carbene complexes. Dalton Trans. 2015, 44, 17617–17628. 10.1039/c5dt02317c. PubMed DOI

Shen C.; Shen H.; Yang M.; Xia C.; Zhang P. A novel D-glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki-Heck reactions and its application in the synthesis of Axitinib. Green Chem. 2015, 17, 225–230. 10.1039/c4gc01606h. DOI

Chemler S. R.; Trauner D.; Danishefsky S. J. The B-alkyl Suzuki-Miyaura cross-coupling reaction: development, mechanistic study, and applications in natural product synthesis. Angew. Chem., Int. Ed. 2001, 40, 4544–4568. 10.1002/1521-3773(20011217)40:24<4544::aid-anie4544>3.0.co;2-n. PubMed DOI

Torborg C.; Beller M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 2009, 351, 3027–3043. 10.1002/adsc.200900587. DOI

Martin R.; Buchwald S. L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 2008, 41, 1461–1473. 10.1021/ar800036s. PubMed DOI PMC

Shi S.; Nolan S. P.; Szostak M. Well-defined palladium (II)-NHC precatalysts for cross-coupling reactions of amides and esters by selective N-C/O-C cleavage. Acc. Chem. Res. 2018, 51, 2589–2599. 10.1021/acs.accounts.8b00410. PubMed DOI

Shendage S. S.; Patil U. B.; Nagarkar J. M. Electrochemical synthesis and characterization of palladium nanoparticles on nafion-graphene support and its application for Suzuki coupling reaction. Tetrahedron Lett. 2013, 54, 3457–3461. 10.1016/j.tetlet.2013.04.092. DOI

Firouzabadi H.; Iranpoor N.; Ghaderi A.; Ghavami M.; Hoseini S. J. Palladium nanoparticles supported on aminopropyl-functionalized clay as efficient catalysts for phosphine-free C-C bond formation via Mizoroki-Heck and Suzuki-Miyaura reactions. Bull. Chem. Soc. Jpn. 2011, 84, 100–109. 10.1246/bcsj.20100219. DOI

Karami K.; Ghasemi M.; Haghighat Naeini N. Palladium nanoparticles supported on polymer: an efficient and reusable heterogeneous catalyst for the Suzuki cross-coupling reactions and aerobic oxidation of alcohols. Catal. Commun. 2013, 38, 10–15. 10.1016/j.catcom.2013.04.003. DOI

Nasrollahzadeh M.; Sajadi S. M.; Maham M. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J. Mol. Catal. A: Chem. 2015, 396, 297–303. 10.1016/j.molcata.2014.10.019. DOI

Dabiri M.; Lehi N. F.; Movahed S. K. Fe3O4@RGO@Au@C composite with magnetic core and Au enwrapped in double-shelled carbon: an excellent catalyst in the reduction of nitroarenes and Suzuki-Miyaura cross-coupling. Catal. Lett. 2016, 146, 1674–1686. 10.1007/s10562-016-1792-8. DOI

Movahed S. K.; Shariatipour M.; Dabiri M. Gold nanoparticles decorated on a graphene-periodic mesoporous silica sandwich nanocomposite as a highly efficient and recyclable heterogeneous catalyst for catalytic applications. RSC Adv. 2015, 5, 33423–33431. 10.1039/c5ra00062a. DOI

Hajipour A. R.; Kalantari Tarrari M.; Jajarmi S. Synthesis and characterization of 4-AMTT-Pd(II) complex over Fe3O4@SiO2 as supported nanocatalyst for Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions in water. Appl. Organomet. Chem. 2018, 32, e417110.1002/aoc.4171. DOI

Amini M.; Tarassoli A.; Yousefi S.; Delsouz-Hafshejani S.; Bigdeli M.; Salehifar M. Suzuki-Miyaura cross-coupling reactions in water using in situ generated palladium (II)-phosphazane complexes. Chin. Chem. Lett. 2014, 25, 166–168. 10.1016/j.cclet.2013.10.002. DOI

Karimi B.; Mansouri F.; Vali H. A highly water-dispersible/magnetically separable palladium catalyst based on a Fe3O4@SiO2 anchored TEG-imidazolium ionic liquid for the Suzuki-Miyaura coupling reaction in water. Green Chem. 2014, 16, 2587–2596. 10.1039/c3gc42311e. DOI

Liu C.; Li X.; Wang X.; Qiu J. Palladium-catalyzed ligand-free and efficient Suzuki-Miyaura reaction of N-methyliminodiacetic acid boronates in water. Turk. J. Chem. 2015, 39, 1208–1215. 10.3906/kim-1505-97. DOI

Jana S.; Haldar S.; Koner S. Heterogeneous Suzuki and Stille coupling reactions using highly efficient palladium(0) immobilized MCM-41 catalyst. Tetrahedron Lett. 2009, 50, 4820–4823. 10.1016/j.tetlet.2009.05.098. DOI

Chattopadhyay K.; Dey R.; Ranu B. C. Shape-dependent catalytic activity of copper oxide-supported Pd(0) nanoparticles for Suzuki and cyanation reactions. Tetrahedron Lett. 2009, 50, 3164–3167. 10.1016/j.tetlet.2009.01.027. DOI

Senapati K. K.; Roy S.; Borgohain C.; Phukan P. Palladium nanoparticle supported on cobalt ferrite: An efficient magnetically separable catalyst for ligand free Suzuki coupling. J. Mol. Catal. A: Chem. 2012, 352, 128–134. 10.1016/j.molcata.2011.10.022. DOI

Shimizu K.-i.; Kan-no T.; Kodama T.; Hagiwara H.; Kitayama Y. Suzuki cross-coupling reaction catalyzed by palladium-supported sepiolite. Tetrahedron Lett. 2002, 43, 5653–5655. 10.1016/s0040-4039(02)01132-2. DOI

Metin Ö.; Ho S. F.; Alp C.; Can H.; Mankin M. N.; Gültekin M. S.; Chi M.; Sun S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18. 10.1007/s12274-012-0276-4. DOI

Kwon T. H.; Cho K. Y.; Baek K.-Y.; Yoon H. G.; Kim B. M. Recyclable palladium–graphene nanocomposite catalysts containing ionic polymers: efficient Suzuki coupling reactions. RSC Adv. 2017, 7, 11684–11690. 10.1039/c6ra26998b. DOI

Feng Y.-S.; Lin X.-Y.; Hao J.; Xu H.-J. Pd–Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki–Miyaura and Sonogashira cross-coupling reactions. Tetrahedron 2014, 70, 5249–5253. 10.1016/j.tet.2014.05.083. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...