MAS dependent sensitivity of different isotopomers in selectively methyl protonated protein samples in solid state NMR
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ERC-2014-CoG "P-MEM-NMR" GA n 648974
European Research Council - International
GA 653706
EU access project iNext
Project B07
Deutsche Forschungsgemeinschaft
SFB-1035
Deutsche Forschungsgemeinschaft
Grant Re1435
Deutsche Forschungsgemeinschaft
PubMed
31515660
DOI
10.1007/s10858-019-00274-0
PII: 10.1007/s10858-019-00274-0
Knihovny.cz E-zdroje
- Klíčová slova
- CH3 labelling, Magic angle spinning (MAS), Methyl isotopomers, Microcrystalline proteins, Selective deuteration, Solid state NMR,
- MeSH
- deuterium chemie MeSH
- metylace * MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- protony * MeSH
- senzitivita a specificita MeSH
- spektrin chemie MeSH
- src homologní domény MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deuterium MeSH
- protony * MeSH
- spektrin MeSH
Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70-110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.
Zobrazit více v PubMed
Sci Rep. 2017 Aug 7;7(1):7444 PubMed
Nat Methods. 2007 Sep;4(9):697-703 PubMed
Methods Mol Biol. 2018;1764:87-100 PubMed
Angew Chem Int Ed Engl. 2015 Dec 21;54(52):15799-803 PubMed
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9187-92 PubMed
J Biomol NMR. 2015 Feb;61(2):161-71 PubMed
J Am Chem Soc. 2001 Mar 28;123(12):2921-2 PubMed
J Biomol NMR. 2015 Oct;63(2):165-86 PubMed
J Am Chem Soc. 2008 Dec 10;130(49):16611-21 PubMed
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4367-9 PubMed
J Magn Reson. 2000 Dec;147(2):296-330 PubMed
Solid State Nucl Magn Reson. 2017 Oct;87:126-136 PubMed
J Magn Reson. 2018 Feb;287:140-152 PubMed
Angew Chem Int Ed Engl. 2011 Dec 2;50(49):11697-701 PubMed
J Am Chem Soc. 2010 Nov 3;132(43):15133-5 PubMed
J Magn Reson. 2015 Apr;253:71-9 PubMed
J Am Chem Soc. 2007 Oct 24;129(42):12668-9 PubMed
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5758-5762 PubMed
J Biomol NMR. 2012 Jan;52(1):31-9 PubMed
PLoS Biol. 2018 May 21;16(5):e2006192 PubMed
J Magn Reson. 2014 Sep;246:79-93 PubMed
Acc Chem Res. 2013 Sep 17;46(9):2089-97 PubMed
Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12253-6 PubMed
J Am Chem Soc. 2007 Aug 22;129(33):10195-200 PubMed
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15504-15509 PubMed
J Magn Reson. 2007 Dec;189(2):209-16 PubMed
Top Curr Chem. 2005;246:15-31 PubMed
J Magn Reson. 2001 Aug;151(2):320-7 PubMed
Angew Chem Int Ed Engl. 2006 Jun 2;45(23):3878-81 PubMed
J Biomol NMR. 2019 Feb;73(1-2):19-29 PubMed
Chem Commun (Camb). 2016 Jul 21;52(61):9558-61 PubMed
J Chem Phys. 2006 Oct 14;125(14):144508 PubMed
J Magn Reson. 2012 Mar;216:1-12 PubMed
J Am Chem Soc. 2014 Sep 3;136(35):12489-97 PubMed