Reductant-Induced Free Radical Fluoroalkylation of Nitrogen Heterocycles and Innate Aromatic Amino Acid Residues in Peptides and Proteins
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
61388963
Ústav Organické Chemie a Biochemie, Akademie Věd České Republiky
61388971
Akademie Věd České Republiky
17-00598S
Grantová Agentura České Republiky
19-16084S
Grantová Agentura České Republiky
LM2015043 CIISB
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109 BIOCEV
European Regional Development Fund
- Keywords
- bioconjugation, fluorine, iodine, radicals, tryptophan,
- MeSH
- Alkylation MeSH
- Amino Acids, Aromatic chemical synthesis chemistry MeSH
- Halogenation MeSH
- Indoles chemical synthesis chemistry MeSH
- Humans MeSH
- Models, Molecular MeSH
- Peptides chemical synthesis chemistry MeSH
- Proteins chemical synthesis chemistry MeSH
- Pyrroles chemical synthesis chemistry MeSH
- Free Radicals chemical synthesis chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Acids, Aromatic MeSH
- Indoles MeSH
- Peptides MeSH
- Proteins MeSH
- Pyrroles MeSH
- Free Radicals MeSH
A series of fluoroalkylated cyclic λ3 -iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.
CF Plus Chemicals s r o Karásek 1767 1 62100 Brno Řečkovice Czech Republic
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 14200 Prague 4 Czech Republic
See more in PubMed
C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740.
D. M. Patterson, L. A. Nazarova, J. A. Prescher, ACS Chem. Biol. 2014, 9, 592-605.
E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974-6998;
Angew. Chem. 2009, 121, 7108-7133.
O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
H. Ban, M. Nagano, J. Gavrilyuk, W. Hakamata, T. Inokuma, C. F. Barbas 3rd, Bioconjugate Chem. 2013, 24, 520-532.
J. Gavrilyuk, H. Ban, M. Nagano, W. Hakamata, C. F. Barbas 3rd, Bioconjugate Chem. 2012, 23, 2321-2328.
J. M. Antos, M. B. Francis, J. Am. Chem. Soc. 2004, 126, 10256-10257.
Y. Seki, T. Ishiyama, D. Sasaki, J. Abe, Y. Sohma, K. Oisaki, M. Kanai, J. Am. Chem. Soc. 2016, 138, 10798-10801.
M. Imiolek, G. Karunanithy, W. L. Ng, A. J. Baldwin, V. Gouverneur, B. G. Davis, J. Am. Chem. Soc. 2018, 140, 1568-1571.
P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579-2586.
V. Matoušek, J. Václavík, P. Hájek, J. Charpentier, Z. E. Blastik, E. Pietrasiak, A. Budinská, A. Togni, P. Beier, Chem. Eur. J. 2016, 22, 417-424.
J. Václavík, R. Zschoche, I. Klimánková, V. Matoušek, P. Beier, D. Hilvert, A. Togni, Chem. Eur. J. 2017, 23, 6490-6494.
T. Koike, M. Akita, J. Fluorine Chem. 2014, 167, 30-36.
S.-M. Wang, J.-B. Han, C.-P. Zhang, H.-L. Qin, J.-C. Xiao, Tetrahedron 2015, 71, 7949-7976.
M. B. Hansen, F. Hubalek, T. Skrydstrup, T. Hoeg-Jensen, Chem. Eur. J. 2016, 22, 1572-1576.
J. N. Brantley, A. V. Samant, F. D. Toste, ACS Cent. Sci. 2016, 2, 341-350.
M. S. Wiehn, E. V. Vinogradova, A. Togni, J. Fluorine Chem. 2010, 131, 951-957.
R. Shimizu, H. Egami, T. Nagi, J. Chae, Y. Hamashima, M. Sodeoka, Tetrahedron Lett. 2010, 51, 5947-5949.
M. Sodeoka, A. Miyazaki, R. Shimizu, H. Egami, Heterocycles 2012, 86, 979-983.
A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765-773.
W. R. Dolbier, Chem. Rev. 1996, 96, 1557-1584.
D. N. Perkins, D. J. Pappin, D. M. Creasy, J. S. Cottrell, Electrophoresis 1999, 20, 3551-3567.
Structural Characterization of Monoclonal Antibodies and Epitope Mapping by FFAP Footprinting