Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- Morogoro virus, arenavirus, capture-mark-recapture, mathematical modelling, multimammate mouse, parasite-host interactions, rodent-borne parasite, transmission dynamics,
- MeSH
- Arenavirus immunology MeSH
- Population Density MeSH
- Arenaviridae Infections epidemiology MeSH
- Mice MeSH
- Rodent Diseases epidemiology MeSH
- Antibodies, Viral MeSH
- Seroepidemiologic Studies MeSH
- Disease Reservoirs veterinary MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Tanzania epidemiology MeSH
- Names of Substances
- Antibodies, Viral MeSH
A key aim in wildlife disease ecology is to understand how host and parasite characteristics influence parasite transmission and persistence. Variation in host population density can have strong impacts on transmission and outbreaks, and theory predicts particular transmission-density patterns depending on how parasites are transmitted between individuals. Here, we present the results of a study on the dynamics of Morogoro arenavirus in a population of multimammate mice (Mastomys natalensis). This widespread African rodent, which is also the reservoir host of Lassa arenavirus in West Africa, is known for its strong seasonal density fluctuations driven by food availability. We investigated to what degree virus transmission changes with host population density and how the virus might be able to persist during periods of low host density. A seven-year capture-mark-recapture study was conducted in Tanzania where rodents were trapped monthly and screened for the presence of antibodies against Morogoro virus. Observed seasonal seroprevalence patterns were compared with those generated by mathematical transmission models to test different hypotheses regarding the degree of density dependence and the role of chronically infected individuals. We observed that Morogoro virus seroprevalence correlates positively with host density with a lag of 1-4 months. Model results suggest that the observed seasonal seroprevalence dynamics can be best explained by a combination of vertical and horizontal transmission and that a small number of animals need to be infected chronically to ensure viral persistence. Transmission dynamics and viral persistence were best explained by the existence of both acutely and chronically infected individuals and by seasonally changing transmission rates. Due to the presence of chronically infected rodents, rodent control is unlikely to be a feasible approach for eliminating arenaviruses such as Lassa virus from Mastomys populations.
Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
Clinical and Epidemiological Virology Rega Institute KU Leuven Leuven Belgium
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Engineering Management University of Antwerp Antwerp Belgium
Evolutionary Ecology Group University of Antwerp Antwerp Belgium
PestManagement Centre Sokoine University of Agriculture Morogoro Tanzania
See more in PubMed
Adler, F. R., Pearce-Duvet, J. M. C., & Dearing, M. D. (2008). How host population dynamics translate into time-lagged prevalence: An investigation of Sin Nombre virus in deer mice. Bulletin of Mathematical Biology, 70(1), 236-252. https://doi.org/10.1007/s11538-007-9251-8
Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9(4), 467-484. https://doi.org/10.1111/j.1461-0248.2005.00879.x
Anderson, R., & May, R. (1979). Population biology of infectious diseases: Part I. Nature, 280, 361-367. https://doi.org/10.1038/280361a0
Anderson, R. M., & May, R. M. (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 291(1054), 451-524. https://doi.org/10.1098/rstb.1981.0005
Antonovics, J., Wilson, A. J., Forbes, M. R., Hauffe, H. C., Kallio, E. R., Leggett, H. C., … Webster, J. P. (2017). The evolution of transmission mode. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1719), 20160083. https://doi.org/10.1098/rstb.2016.0083
Bagamian, K. H., Towner, J. S., Kuenzi, A. J., Douglass, R. J., Rollin, P. E., Waller, L. A., & Mills, J. N. (2012). Transmission ecology of Sin Nombre Hantavirus in naturally infected North American deermouse populations in outdoor enclosures. PLoS ONE, 7(10), 1-10. https://doi.org/10.1371/journal.pone.0047731
Bartlett, M. S. (1957). Measles periodicity and community size. Journal of Royal Statistical Society, 120(1), 48-70. https://doi.org/10.2307/2342553
Begon, M., Bennett, M., Bowers, R. G., French, N. P., Hazel, S. M., & Turner, J. (2002). A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiology and Infection, 129(1), 147-153. https://doi.org/10.1017/S0950268802007148
Begon, M., Hazel, S. M., Telfer, S., Bown, K., Carslake, D., Cavanagh, R., … Cavanagh, R. (2003). Rodents, cowpox virus and islands: densities, numbers and thresholds. Journal of Animal Ecology, 72(2), 343-355.
Begon, M., Telfer, S., Smith, M. J., Burthe, S., Paterson, S., & Lambin, X. (2009). Seasonal host dynamics drive the timing of recurrent epidemics in a wildlife population. Proceedings of the Royal Society B-Biological Sciences, 276(January), 1603-1610. https://doi.org/10.1098/rspb.2008.1732
Bonwitt, J., Sáez, A. M., Lamin, J., Ansumana, R., Dawson, M., Buanie, J., … Brown, H. (2017). At home with mastomys and rattus: Human-rodent interactions and potential for primary transmission of lassa virus in domestic spaces. American Journal of Tropical Medicine and Hygiene, 96(4), 935-943. https://doi.org/10.4269/ajtmh.16-0675
Borremans, B. (2014). Ammonium improves elution of fixed dried blood spots without affecting immunofluorescence assay quality. Tropical Medicine & International Health: TM & IH, 19(4), 413-416. https://doi.org/10.1111/tmi.12259
Borremans, B., Hughes, N. K., Reijniers, J., Sluydts, V., Katakweba, A. A. S., Mulungu, L. S., … Leirs, H. (2013). Happily together forever: Temporal variation in spatial patterns and complete lack of territoriality in a promiscuous rodent. Population Ecology, 56, 109-118. https://doi.org/10.1007/s10144-013-0393-2
Borremans, B., Leirs, H., Gryseels, S., Günther, S., Makundi, R., & Gouÿ de Bellocq, J. (2011). Presence of Mopeia virus, an African arenavirus, related to biotope and individual rodent host characteristics: Implications for virus transmission. Vector Borne and Zoonotic Diseases, 11, 1125-1131. https://doi.org/10.1089/vbz.2010.0010
Borremans, B., Reijniers, J., Hens, N., & Leirs, H. (2017). The shape of the contact-density function matters when modelling parasite transmission in fluctuating populations. Royal Society Open Science, 4(11), 171308. https://doi.org/10.1098/rsos.171308
Borremans, B., Reijniers, J., Hughes, N. K., Godfrey, S. S., Gryseels, S., Makundi, R. H., & Leirs, H. (2016). Nonlinear scaling of foraging contacts with rodent population density. Oikos, 126(6), 792-800. https://doi.org/10.1111/oik.03623.
Borremans, B., Sluydts, V., Makundi, R. H., & Leirs, H. (2015). Evaluation of short-, mid- and long-term effects of toe clipping on a wild rodent. Wildlife Research, 42(1985), 143-148.
Borremans, B., Vossen, R., Becker-Ziaja, B., Gryseels, S., Hughes, N., Van Gestel, M., … Leirs, H. (2015). Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Nature Publishing Group, 5(1), 1-8. https://doi.org/10.1038/srep10445
Davis, S., Begon, M., Bruyn, L. D., Ageyev, V. S., Klassovskiy, N. L., Pole, S. B., … Leirs, H. (2004). Predictive thresholds for plague in Kazakhstan. Science, 304(5671), 736-738.
Davis, S., Fichet-Calvet, E., & Leirs, H. (2005). Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector Borne and Zoonotic Diseases, 5(4), 305-314. https://doi.org/10.1089/vbz.2005.5.305
Demby, A. H., Inapogui, A., Kargbo, K., Koninga, J., Kourouma, K., Kanu, J., … Bausch, D. G. (2001). Lassa fever in guinea: II. Distribution and prevalence of Lassa virus infection in small mammals. Vector Borne and Zoonotic Diseases, 1, 283-299. https://doi.org/10.1089/15303660160025912
Dobson, A. P., & Meagher, M. (1996). The population dynamics of brucellosis in the Yellowstone National Park. Ecology, 77(4), 1026-1036. https://doi.org/10.2307/2265573
Fichet-Calvet, E., Becker-Ziaja, B., Koivogui, L., & Günther, S. (2014). Lassa serology in natural populations of rodents and horizontal transmission. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 14(9), 665-674. https://doi.org/10.1089/vbz.2013.1484
Foley, J. E., Foley, P., & Pedersen, N. C. (1999). The persistence of a SIS disease in a metapopulation. Journal of Applied Ecology, 36(4), 555-563. https://doi.org/10.1046/j.1365-2664.1999.00427.x.
Forbes, K. M., Sironen, T., & Plyusnin, A. (2018). Hantavirus maintenance and transmission in reservoir host populations. Current Opinion in Virology, 28, 1-6. https://doi.org/10.1016/j.coviro.2017.09.003
Fulhorst, C. F., Milazzo, M. L., Bradley, R. D., & Peppers, L. L. (2001). Experimental infection of Neotoma albigula (Muridae) with Whitewater Arroyo virus (Arenaviridae). The American Journal of Tropical Medicine and Hygiene, 65(2), 147-151. https://doi.org/10.4269/ajtmh.2001.65.147
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., & Fabian Scheipl, T. H. (2017). mvtnorm: Multivariate normal and t distributions. Retrieved from http://cran.r-project.org/package=mvtnorm
Gibson, G., & Renshaw, E. (1998). Estimating parameters in stochastic compartmental models using Markov chain methods. Mathematical Medicine and Biology, 15(1), 19-40. https://doi.org/10.1093/imammb/15.1.19
Gonzalez, J. P., McCormick, J. B., Saluzzo, J. F., Herve, J. P., Georges, A. J., & Johnson, K. M. (1983). An arenavirus isolated from wild-caught rodents (Praomys species) in the Central African Republic. Intervirology, 19, 105-112. https://doi.org/10.15713/ins.mmj.3
Goyens, J., Reijniers, J., Borremans, B., & Leirs, H. (2013). Density thresholds for Mopeia virus invasion and persistence in its host Mastomys natalensis. Journal of Theoretical Biology, 317, 55-61. https://doi.org/10.1016/j.jtbi.2012.09.039
Gryseels, S., Baird, S. J. E., Borremans, B., Makundi, R., & Leirs, H. & Goüy de Bellocq, J. (2017). When viruses don't go viral: The importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Path, 13(1), e1006073. https://doi.org/10.1371/journal.ppat.1006073
Guivier, E., Galan, M., Chaval, Y., Xuéreb, A., Ribas salvador, A., Poulle, M.-L., … Cosson, J. F. (2011). Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Molecular Ecology, 20(17), 3569-3583. https://doi.org/10.1111/j.1365-294X.2011.05199.x
Günther, S., Hoofd, G., Charrel, R., Röser, C., Becker-Ziaja, B., Lloyd, G., … Leirs, H. (2009). Mopeia virus-related arenavirus in natal multimammate mice, Morogoro, Tanzania. Emerging Infectious Diseases, 15(12), 2008-2012. https://doi.org/10.3201/eid1512.090864
Hanski, I. (1999). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87(2), 209. https://doi.org/10.2307/3546736
Hartley, D. M., Barker, C. M., Le Menach, A., Niu, T., Gaff, H. D., & Reisen, W. K. (2012). Effects of temperature on emergence and seasonality of West Nile virus in California. American Journal of Tropical Medicine and Hygiene, 86(5), 884-894. https://doi.org/10.4269/ajtmh.2012.11-0342
Hudson, P. J., Rizzoli, A., Grenfell, B., Heesterbeek, H., & Dobson, A. P. (2002). In P. J. Hudson (Ed.), The ecology of wildlife disease. New York: Oxford University Press.
Kennis, J., Sluydts, V., Leirs, H., & van Hooft, W. F. P. (2008). Polyandry and polygyny in an African rodent pest species, Mastomys natalensis. Mammalia, 72, 150-160. https://doi.org/10.1515/MAMM.2008.025
Krebs, C. J. (2013). Population Fluctuations in Rodents (pp. 306). Chicago: The University of Chicago Press.
Leirs, H. (1994). Population ecology of Mastomys natalensis (Smith, 1834). Implications for rodent control in Africa. Brussels: A. Belgian Administration for Development Cooperation.
Lloyd-Smith, J. O., Cross, P. C., Briggs, C. J., Daugherty, M., Getz, W. M., Latto, J., … Swei, A. (2005). Should we expect population thresholds for wildlife disease? Trends in Ecology and Evolution, 20(9), 511-519. https://doi.org/10.1016/j.tree.2005.07.004
Lytle, C. D., & Sagripanti, J.-L. (2005). Predicted inactivation of viruses of relevance to biodefense by solar radiation. Journal of Virology, 79(22), 14244-14252. https://doi.org/10.1128/JVI.79.22.14244-14252.2005
Mariën, J., Borremans, B., Gryseels, S., Broecke, B. V., Becker-Ziaja, B., Makundi, R., … Leirs, H. (2017). Arenavirus dynamics in experimentally and naturally infected rodents. EcoHealth, 14(3), 463-473. https://doi.org/10.1007/s10393-017-1256-7
Mariën, J., Borremans, B., Gryseels, S., Soropogui, B., De Bruyn, L., Bongo, G. N., … Fichet-Calvet, E. (2017). No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites & Vectors, 10(1), 210. https://doi.org/10.1186/s13071-017-2146-0
Mariën, J., Borremans, B., Kourouma, F., Baforday, J., Rieger, T., Günther, S., … Fichet-Calvet, E. (2019). Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerging Microbes & Infections, 8(1), 640-649. https://doi.org/10.1080/22221751.2019.1605846
Mariën, J., Borremans, B., Verhaeren, C., Lucinda, K., & Sophie, G., Goüy de Bellocq, J., … Leirs, H. (2019). Data from: Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host. Dryad Digital Repository, https://doi.org/10.5061/dryad.0g22962
Mariën, J., Kourouma, F., Magassouba, N., Leirs, H., & Fichet-Calvet, E. (2018). Movement patterns of small rodents in Lassa fever-endemic villages in Guinea. EcoHealth, 15(2), 348-359. https://doi.org/10.1007/s10393-018-1331-8
Mariën, J., Sluydts, V., Borremans, B., Gryseels, S., Vanden Broecke, B., Sabuni, C. A., … Leirs, H. (2018). Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasites & Vectors, 11(1), 90. https://doi.org/10.1186/s13071-018-2674-2
Milazzo, M. L., & Fulhorst, C. F. (2012). Duration of catarina virus infection in the southern plains woodrat (Neotoma micropus ). Vector-Borne and Zoonotic Diseases, 12(4), 321-324. https://doi.org/10.1089/vbz.2011.0852
Mills, J. N., Ksiazek, T. G., Peters, C. J., & Childs, J. E. (1999). Long-term studies of hantavirus reservoir populations in the southwestern United States: A synthesis. Emerging Infectious Diseases, 5(1), 135-142. https://doi.org/10.3201/eid0501.990116
Monath, T. P. (1987). Lassa fever: New issues raised by field studies in West Africa. Journal of Infectious Diseases, 155, 433-436. https://doi.org/10.1093/infdis/155.3.433
Morters, M. K., Restif, O., Hampson, K., Cleaveland, S., Wood, J. L. N., & Conlan, A. J. K. (2012). Evidence-based control of canine rabies: A critical review of population density reduction. Journal of Animal Ecology, 82(1), 6-14. https://doi.org/10.1111/j.1365-2656.2012.02033.x
Myers, J. H. (2018). Population cycles: generalities, exceptions and remaining mysteries. Proceedings of the Royal Society B, 285. http://doi.org/10.1098/rspb.2017.2841
Oldstone, M. (2002). Biology and pathogenesis of lymphocytic choriomeningitis virus infection. In A. Clarke (Ed.). Berlin, Heidelberg, Germany: Springer-Verlag.
Peel, A. J., Pulliam, J. R. C., Luis, A. D., Plowright, R. K., Shea, T. J. O., Hayman, D. T. S., … Restif, O. (2014). The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proceedings of the Royal Society B: Biological Sciences, 281(1786), 20132962. https://doi.org/10.1098/rspb.2013.2962
Plowright, R. K., Peel, A. J., Streicker, D. G., Gilbert, A. T., McCallum, H., Wood, J., … Restif, O. (2016). Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Neglected Tropical Diseases, 10(8), 1-21. https://doi.org/10.1371/journal.pntd.0004796
Rambaut, A., Pybus, O. G., Nelson, M. I., Viboud, C., Jeffery, K., & Holmes, E. C. (2009). The genomic andepidemiological dynamics of human influenza A virus. Nature, 453, 615-619.
Ryder, J. J., Miller, M. R., White, A., Knell, R. J., & Boots, M. (2007). Host-parasite population dynamics under combined frequency- and density-dependent transmission. Oikos, 116(12), 2017-2026. https://doi.org/10.1111/j.2007.0030-1299.15863.x
Sagripanti, J. L., Rom, A. M., & Holland, L. E. (2010). Persistence in darkness of virulent alphaviruses, Ebola virus, and Lassa virus deposited on solid surfaces. Archives of Virology, 155(12), 2035-2039. https://doi.org/10.1007/s00705-010-0791-0
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Tokyo, Japan: KTK Scientific Publishers.
Sikes, R. S., & Gannon, W. L. (2007). Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 88(3), 809-823. https://doi.org/10.1644/10-MAMM-F-355.1
Sluydts, V., Davis, S., Mercelis, S., & Leirs, H. (2009). Comparison of multimammate mouse (Mastomys natalensis) demography in monoculture and mosaic agricultural habitat: Implications for pest management. Crop Protection, 28(8), 647-654. https://doi.org/10.1016/j.cropro.2009.03.018
Smith, M. J., Telfer, S., Kallio, E. R., Burthe, S., Cook, A. R., Lambin, X., & Begon, M. (2009). Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences, 106(19), 7905-7909. https://doi.org/10.1073/pnas.0809145106
Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrel, J. W., Chan, K.-S., & Lima, M. (2002). Ecological effects of climate fluctuations. Ecology and Climatology, 297(August), 1292-1296. https://doi.org/10.1126/science.1071281
Stephenson, E., Larson, E., & Dominik, J. W. (1984). Effect of environmental factors on aerosol-induced Lassa virus infection. Journal of Medical Virology, 14, 295-303. https://doi.org/10.1002/jmv.1890140402
Vieth, S., Drosten, C., Lenz, O., Vincent, M., Omilabu, S., Hass, M., … Günther, S. (2007). RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 1253-1264. https://doi.org/10.1016/j.trstmh.2005.03.018
Vitullo, A., & Merani, M. (1988). Is vertical transmission sufficient to maintain Junin virus in nature? The Journal of General Virology, 69, 1437-1440. https://doi.org/10.1099/0022-1317-69-6-1437
Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O., & Henttonen, H. (2016). Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Scientific Reports, 6(1), 1-14. https://doi.org/10.1038/srep21323
Walker, D. H., Wulff, H., Lange, J. V., & Murphy, F. A. (1975). Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bulletin of the World Health Organization, 52, 523-534.
Weber de Melo, V., Sheikh Ali, H., Freise, J., Kühnert, D., Essbauer, S., Mertens, M., … Heckel, G. (2015). Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus. Evol Appl, 8, 545-559. https://doi.org/10.1111/eva.12263
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York, NY: Springer-Verlag.
Wickham, H. (2017). scales: Scale functions for visualization. Retrieved from https://cran.r-project.org/package=scales
Wood, S., & Scheipl, F. (2017). gamm4: Generalized additive mixed models using “mgcv” and “lme4”, 4.
Dryad
10.5061/dryad.0g22962