Crystallization and Quantification of Crystalline and Non-Crystalline Phases in Kaolin-Based Cordierites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31547611
PubMed Central
PMC6811749
DOI
10.3390/ma12193104
PII: ma12193104
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray diffraction, chemical quantitative mineral analysis, cordierite/indialite, raw kaolins, thermal conversions,
- Publikační typ
- časopisecké články MeSH
Kaolin is most often used as traditional raw material in ceramic industry. The purpose of the study was to obtain understanding of the structural and chemical variability of cordierite ceramics influenced by chemical and mineralogical properties of six raw kaolins taken from different localities when they are applied in ceramics mixtures with vermiculite and sintered up to 1300 °C. The X-ray diffraction and simultaneous thermogravimetric and differential thermal analysis were used to identify and characterize crystalline mineral phases and the course of reactions during the heating. The percentages of the crystalline and non-crystalline phases were newly determined by recalculation of the bulk chemical analyses of kaolins and cordierite ceramics using Chemical Quantitative Mineral Analysis (CQMA) method. Varying amounts of minerals in kaolins: kaolinite from 73.3 to 85.0, muscovite from 4.2 to 9.9, and quartz from 6.0 to 19.5 (mass %) affected amount of cordierite/indialite from 75.2 to 85.1, enstatite from 5.8 to 8.9 (when are calculated as their maximal possible percentages), and non-crystalline phases from 8.8 to 15.1 (mass %) in cordierite ceramics. Regression analysis predicted high relationship between quantity of: (a) kaolinite in kaolins and crystalline cordierite and (b) quartz in kaolins and non-crystalline phases in the ceramics. The migration of potassium from muscovite into the cordierite structure, melting point and crystallization of cordierite/indialite phases and pore size variability in relation to impurity of kaolins are documented and discussed.
Zobrazit více v PubMed
Schreyer W., Schairer J.F. Composition and structural states of anhydrous Mg–cordierites: A re-investigation of the central part of the system MgO–Al2O3–SiO2. J. Petrol. 1961;2:324–406. doi: 10.1093/petrology/2.3.324. DOI
Yoder H.S. The MgO–Al2O3–SiO2–H2O system and the related metamorphic facies. Am. J. Sci. 1952;250A:569–627.
Fyfe C.A., Gobbi G.C., Putnis A. Elucidation of the mechanism and kinetics of the Si, Al ordering process in synthetic magnesium cordierite by 29Si magic angle spinning NMR spectroscopy. J. Am. Chem. Soc. 1986;108:3218–3223. doi: 10.1021/ja00272a010. DOI
Predecki P., Haas J., Faber J., Jr., Hitterman R.L. Structural aspects of the lattice thermal expansion of hexagonal cordierite. J. Am. Ceram. Soc. 1987;70:175–182. doi: 10.1111/j.1151-2916.1987.tb04954.x. DOI
Valášková M. Structural characteristics of cordierites based on commercial vermiculites in relation to the natural and synthetic cordierites. Ceram. Silik. 2016;60:308–316. doi: 10.13168/cs.2016.0046. DOI
Valášková M., Zdrálková J., Simha Martynková G., Smetana B., Vlček J., Študentová S. Structural variability of high purity cordierite/steatite ceramics sintered from mixtures with various vermiculites. Ceram. Int. 2014;40:8489–8498. doi: 10.1016/j.ceramint.2014.01.060. DOI
Murray H.H. Industrial application of kaolin. Clays Clay Miner. 1961;10:291–298. doi: 10.1346/CCMN.1961.0100124. DOI
De Aza A.H., Turrillas X., Rodríguez M.A., Duran T., Pena P. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. J. Eur. Ceram. Soc. 2014;341:409–1421. doi: 10.1016/j.jeurceramsoc.2013.10.034. DOI
Pascual J., Zapatero J., de Haro M.C.J., Varona I., Justo A., Pérez-Rodríguez J.L., Sánchez-Soto P.J. Porous mullite and mullite-based composites by chemical processing of kaolinite and aluminium metal wastes. J. Mater. Chem. 2000;10:1409–1414. doi: 10.1039/a909380j. DOI
Lee W.E., Souza G.P., McConville C.J., Tarvornpanich T., Iqbal Y. Mullite formation in clays and clay-derived vitreous ceramics. J. Eur. Ceram. Soc. 2008;28:465–471. doi: 10.1016/j.jeurceramsoc.2007.03.009. DOI
El Ouahabi M., Daoudi L., Hatert F., Fagel N. Modified mineral phases during clay ceramic firing. Clays Clay Miner. 2015;63:404–413. doi: 10.1346/CCMN.2015.0630506. DOI
Sánchez-Soto P.J., Eliche-Quesada D., Martínez-Martínez S., Garzón-Garzón E., Pérez-Villarejo L., Rincón J.M. The effect of vitreous phase on mullite and mullite-based ceramic composites from kaolin wastes as by-products of mining, sericite clays and kaolinite. Mater. Lett. 2018;223:154–158. doi: 10.1016/j.matlet.2018.04.037. DOI
Soro N., Aldon L., Olivier-Fourcade J., Jumas J.C., Laval J.P., Blanchart P. Role of iron in mullite formation from kaolins by Mössbauer spectroscopy and Rietveld refinement. J. Am. Ceram. Soc. 2003;86:129–134. doi: 10.1111/j.1151-2916.2003.tb03289.x. DOI
Lecomte G.L., Bonnet J.P., Blanchart P. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100 °C. J. Mater. Sci. 2007;42:8745–8752. doi: 10.1007/s10853-006-0192-7. DOI
Khalfaoui A., Hajjaji M. A chloritic-illitic clay from Morocco: Temperature-time-transformation and neoformation. Appl. Clay Sci. 2009;45:83–89. doi: 10.1016/j.clay.2009.03.006. DOI
Klika Z., Kolomazník I., Matýsek D., Kliková K. Critical evaluation of a new method for quantitative determination of minerals in solid samples. Cryst. Res. Technol. 2016;51:249–264. doi: 10.1002/crat.201500214. DOI
Kužvart M. Kaolin deposits of Czechoslovakia. Int. Geol. Congr. 23th Prague Proceed. 1968;15:47–73.
Hohn S., Frimmel H.E., Pasava J. The rare earth element potential of kaolin deposits in the Bohemian Massif (Czech Republic, Austria) Miner. Deposita. 2014;49:967–986. doi: 10.1007/s00126-014-0542-3. DOI
Valášková M., Kupková J., Simha Martynková G., Seidlerová J., Tomášek V., Ritz M., Kočí K., Klemm V., Rafaja D. Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanoparticles. Appl. Clay Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI
Valášková M., Hundáková M., Smetana B., Drozdová L., Klemm V., Rafaja D. Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin. Appl. Clay Sci. 2019;179:105150.
Hinckley D.N. Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays Clay Miner. 1962;11:229–235. doi: 10.1346/CCMN.1962.0110122. DOI
Balek V., Murat M. The emanation thermal analysis of kaolinite clay minerals. Termochim. Acta. 1996;283:385–397. doi: 10.1016/0040-6031(96)02886-9. DOI
Horváth E., Frost R.L., Makó E., Kristóf J., Cseh T. Thermal treatment of mechanochemically activated kaolinite. Thermochim. Acta. 2003;404:227–234. doi: 10.1016/S0040-6031(03)00184-9. DOI
Sujeong L., Youn J.K., Hi-Soo M. Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J. Am. Ceram. Soc. 1999;82:2841–2848.
Murat M. Hydration reaction and hardening of calcined clays and related minerals 2. Influence of mineralogical properties of the raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 1983;13:511–518. doi: 10.1016/0008-8846(83)90010-8. DOI
Kakali G., Perraki T., Tsivilis S., Badogiannis E. Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80. doi: 10.1016/S0169-1317(01)00040-0. DOI
Guggenheim S., Chang Y.H., van Groos A.F.K. Muscovite dehydroxylation: High-temperature studies. Am. Miner. 1987;72:537–550.
Gualtieri A.F. Thermal behavior of the raw materials forming porcelain stoneware mixtures by combined optical and in situ X-ray dilatometry. J. Am. Ceram. Soc. 2007;90:1222–1231. doi: 10.1111/j.1551-2916.2007.01614.x. DOI
Pivinskii Y.E., Dyakin P.V. Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 7, Sintering and secondary mullite formation of materials based on composite composition HCBS during nonisothermal heating and isothermal firing. Refract. Ind. Ceram. 2017;57:536–544. doi: 10.1007/s11148-017-0019-x. DOI
Ptáček P., Kubátová D., Havlica J., Brandštetr J., Šoukal F., Opravil T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: The thermogravimetric study. Termochim. Acta. 2010;501:24–29. doi: 10.1016/j.tca.2009.12.018. DOI
Bulens M., Delmon B. Exothermic reaction of metakaolinite in presence of mineralizers—Influence of crystallinity. Clays Clay Miner. 1977;25:271–277. doi: 10.1346/CCMN.1977.0250404. DOI
Rodriguez-Navarro C., Cultrone G., Sanchez-Navas A., Sebastian E. TEM study of mullite growth after muscovite breakdown. Am. Mineral. 2003;88:713–724. doi: 10.2138/am-2003-5-601. DOI
Balek V., Pérez-Rodríguez J.L., Pérez-Maqueda A., Šubrt J., Poyato J. Thermal behaviour of ground vermiculite. J. Thermal. Anal. Calorim. 2007;88:819–823. doi: 10.1007/s10973-005-7462-5. DOI
Valášková M., Simha Martynková G., Smetana B., Šudentová S. Influence of vermiculite on the formation of porous cordierites. Appl. Clay Sci. 2009;46:196–201. doi: 10.1016/j.clay.2009.08.003. DOI
Naskar M.K., Chatterjee M. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J. Eur. Ceram. Soc. 2004;24:3499–3508. doi: 10.1016/j.jeurceramsoc.2003.11.029. DOI
Goren R., Gocmez H., Ozgur C. Synthesis of cordierite powder from talc, diatomite and alumina. Ceram. Int. 2006;32:407–409. doi: 10.1016/j.ceramint.2005.03.016. DOI
Johnson S.M., Pask J.A., Moya J.S. Influence of impurities on high-temperature reactions of kaolinite. J. Am. Ceram. Soc. 1982;65:31–35. doi: 10.1111/j.1151-2916.1982.tb09918.x. DOI
Balassone G., Franco E., Mattia C.A., Puliti R. Indialite in xenolithic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features. Am. Mineral. 2004;89:1–6. doi: 10.2138/am-2004-0101. DOI
Benito M., Turrillas X., Cuello G.J., De Aza A.H., De Aza S., Rodríguez M.A. Cordierite synthesis. A time-resolved neutron diffraction study. J. Eur. Ceram. Soc. 2012;32:371–379. doi: 10.1016/j.jeurceramsoc.2011.09.010. DOI
Redfern S.A.T., Salje E., Maresch W., Schreyer W. X-ray powder-diffraction and infrared study of the hexagonal to orthorhombic phase transition in K-bearing cordierite. Am. Miner. 1989;74:1293–1299.
Mercurio D., Thomas P., Mercurio J.P., Frit B., Kim Y.H., Roult G. Powder neutron diffraction study of the thermal expansion of a K-substituted cordierite. J. Mat. Sci. 1989;24:3976–3983. doi: 10.1007/BF01168960. DOI
Daniels P. Structural effects of the incorporation of large-radius alkalis in high cordierite. Am. Miner. 1992;77:407–411.
Gouby I., Thomas P., Mercurio D., Merle-Méjean T., Frit B. Powder X-ray-diffraction and infrared study of the structural evolution in highly K-doped cordierites. Mater. Res. Bull. 1995;30:593–599. doi: 10.1016/0025-5408(95)00037-2. DOI
Schwartz K.B., Leong D.B., McConville R.L. Structural chemistry of synthetic cordierite: Evidence for solid solutions and disordered compositional domains in bi-flux-grown Mg–cordierites. Phys. Chem. Miner. 1994;20:563–574. doi: 10.1007/BF00211852. DOI
Lecomte-Nana G.L., Bonnet J.P., Blanchart P.T. Investigation of the sintering mechanisms of kaolin–muscovite. Appl. Clay Sci. 2011;51:445–451. doi: 10.1016/j.clay.2011.01.007. DOI
Liaw D.-W., Tsai C.-Y., Wei W.-C.J. Thermal insulation of muscovite/glass ceramic foam for solid oxide fuel cell. J. Power Sources. 2011;196:8012–8018. doi: 10.1016/j.jpowsour.2011.05.027. DOI