Crystallization and Quantification of Crystalline and Non-Crystalline Phases in Kaolin-Based Cordierites

. 2019 Sep 23 ; 12 (19) : . [epub] 20190923

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31547611

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000853 Ministerstvo Školství, Mládeže a Tělovýchovy

Kaolin is most often used as traditional raw material in ceramic industry. The purpose of the study was to obtain understanding of the structural and chemical variability of cordierite ceramics influenced by chemical and mineralogical properties of six raw kaolins taken from different localities when they are applied in ceramics mixtures with vermiculite and sintered up to 1300 °C. The X-ray diffraction and simultaneous thermogravimetric and differential thermal analysis were used to identify and characterize crystalline mineral phases and the course of reactions during the heating. The percentages of the crystalline and non-crystalline phases were newly determined by recalculation of the bulk chemical analyses of kaolins and cordierite ceramics using Chemical Quantitative Mineral Analysis (CQMA) method. Varying amounts of minerals in kaolins: kaolinite from 73.3 to 85.0, muscovite from 4.2 to 9.9, and quartz from 6.0 to 19.5 (mass %) affected amount of cordierite/indialite from 75.2 to 85.1, enstatite from 5.8 to 8.9 (when are calculated as their maximal possible percentages), and non-crystalline phases from 8.8 to 15.1 (mass %) in cordierite ceramics. Regression analysis predicted high relationship between quantity of: (a) kaolinite in kaolins and crystalline cordierite and (b) quartz in kaolins and non-crystalline phases in the ceramics. The migration of potassium from muscovite into the cordierite structure, melting point and crystallization of cordierite/indialite phases and pore size variability in relation to impurity of kaolins are documented and discussed.

Zobrazit více v PubMed

Schreyer W., Schairer J.F. Composition and structural states of anhydrous Mg–cordierites: A re-investigation of the central part of the system MgO–Al2O3–SiO2. J. Petrol. 1961;2:324–406. doi: 10.1093/petrology/2.3.324. DOI

Yoder H.S. The MgO–Al2O3–SiO2–H2O system and the related metamorphic facies. Am. J. Sci. 1952;250A:569–627.

Fyfe C.A., Gobbi G.C., Putnis A. Elucidation of the mechanism and kinetics of the Si, Al ordering process in synthetic magnesium cordierite by 29Si magic angle spinning NMR spectroscopy. J. Am. Chem. Soc. 1986;108:3218–3223. doi: 10.1021/ja00272a010. DOI

Predecki P., Haas J., Faber J., Jr., Hitterman R.L. Structural aspects of the lattice thermal expansion of hexagonal cordierite. J. Am. Ceram. Soc. 1987;70:175–182. doi: 10.1111/j.1151-2916.1987.tb04954.x. DOI

Valášková M. Structural characteristics of cordierites based on commercial vermiculites in relation to the natural and synthetic cordierites. Ceram. Silik. 2016;60:308–316. doi: 10.13168/cs.2016.0046. DOI

Valášková M., Zdrálková J., Simha Martynková G., Smetana B., Vlček J., Študentová S. Structural variability of high purity cordierite/steatite ceramics sintered from mixtures with various vermiculites. Ceram. Int. 2014;40:8489–8498. doi: 10.1016/j.ceramint.2014.01.060. DOI

Murray H.H. Industrial application of kaolin. Clays Clay Miner. 1961;10:291–298. doi: 10.1346/CCMN.1961.0100124. DOI

De Aza A.H., Turrillas X., Rodríguez M.A., Duran T., Pena P. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. J. Eur. Ceram. Soc. 2014;341:409–1421. doi: 10.1016/j.jeurceramsoc.2013.10.034. DOI

Pascual J., Zapatero J., de Haro M.C.J., Varona I., Justo A., Pérez-Rodríguez J.L., Sánchez-Soto P.J. Porous mullite and mullite-based composites by chemical processing of kaolinite and aluminium metal wastes. J. Mater. Chem. 2000;10:1409–1414. doi: 10.1039/a909380j. DOI

Lee W.E., Souza G.P., McConville C.J., Tarvornpanich T., Iqbal Y. Mullite formation in clays and clay-derived vitreous ceramics. J. Eur. Ceram. Soc. 2008;28:465–471. doi: 10.1016/j.jeurceramsoc.2007.03.009. DOI

El Ouahabi M., Daoudi L., Hatert F., Fagel N. Modified mineral phases during clay ceramic firing. Clays Clay Miner. 2015;63:404–413. doi: 10.1346/CCMN.2015.0630506. DOI

Sánchez-Soto P.J., Eliche-Quesada D., Martínez-Martínez S., Garzón-Garzón E., Pérez-Villarejo L., Rincón J.M. The effect of vitreous phase on mullite and mullite-based ceramic composites from kaolin wastes as by-products of mining, sericite clays and kaolinite. Mater. Lett. 2018;223:154–158. doi: 10.1016/j.matlet.2018.04.037. DOI

Soro N., Aldon L., Olivier-Fourcade J., Jumas J.C., Laval J.P., Blanchart P. Role of iron in mullite formation from kaolins by Mössbauer spectroscopy and Rietveld refinement. J. Am. Ceram. Soc. 2003;86:129–134. doi: 10.1111/j.1151-2916.2003.tb03289.x. DOI

Lecomte G.L., Bonnet J.P., Blanchart P. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1100 °C. J. Mater. Sci. 2007;42:8745–8752. doi: 10.1007/s10853-006-0192-7. DOI

Khalfaoui A., Hajjaji M. A chloritic-illitic clay from Morocco: Temperature-time-transformation and neoformation. Appl. Clay Sci. 2009;45:83–89. doi: 10.1016/j.clay.2009.03.006. DOI

Klika Z., Kolomazník I., Matýsek D., Kliková K. Critical evaluation of a new method for quantitative determination of minerals in solid samples. Cryst. Res. Technol. 2016;51:249–264. doi: 10.1002/crat.201500214. DOI

Kužvart M. Kaolin deposits of Czechoslovakia. Int. Geol. Congr. 23th Prague Proceed. 1968;15:47–73.

Hohn S., Frimmel H.E., Pasava J. The rare earth element potential of kaolin deposits in the Bohemian Massif (Czech Republic, Austria) Miner. Deposita. 2014;49:967–986. doi: 10.1007/s00126-014-0542-3. DOI

Valášková M., Kupková J., Simha Martynková G., Seidlerová J., Tomášek V., Ritz M., Kočí K., Klemm V., Rafaja D. Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanoparticles. Appl. Clay Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI

Valášková M., Hundáková M., Smetana B., Drozdová L., Klemm V., Rafaja D. Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin. Appl. Clay Sci. 2019;179:105150.

Hinckley D.N. Variability in “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays Clay Miner. 1962;11:229–235. doi: 10.1346/CCMN.1962.0110122. DOI

Balek V., Murat M. The emanation thermal analysis of kaolinite clay minerals. Termochim. Acta. 1996;283:385–397. doi: 10.1016/0040-6031(96)02886-9. DOI

Horváth E., Frost R.L., Makó E., Kristóf J., Cseh T. Thermal treatment of mechanochemically activated kaolinite. Thermochim. Acta. 2003;404:227–234. doi: 10.1016/S0040-6031(03)00184-9. DOI

Sujeong L., Youn J.K., Hi-Soo M. Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J. Am. Ceram. Soc. 1999;82:2841–2848.

Murat M. Hydration reaction and hardening of calcined clays and related minerals 2. Influence of mineralogical properties of the raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 1983;13:511–518. doi: 10.1016/0008-8846(83)90010-8. DOI

Kakali G., Perraki T., Tsivilis S., Badogiannis E. Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80. doi: 10.1016/S0169-1317(01)00040-0. DOI

Guggenheim S., Chang Y.H., van Groos A.F.K. Muscovite dehydroxylation: High-temperature studies. Am. Miner. 1987;72:537–550.

Gualtieri A.F. Thermal behavior of the raw materials forming porcelain stoneware mixtures by combined optical and in situ X-ray dilatometry. J. Am. Ceram. Soc. 2007;90:1222–1231. doi: 10.1111/j.1551-2916.2007.01614.x. DOI

Pivinskii Y.E., Dyakin P.V. Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 7, Sintering and secondary mullite formation of materials based on composite composition HCBS during nonisothermal heating and isothermal firing. Refract. Ind. Ceram. 2017;57:536–544. doi: 10.1007/s11148-017-0019-x. DOI

Ptáček P., Kubátová D., Havlica J., Brandštetr J., Šoukal F., Opravil T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: The thermogravimetric study. Termochim. Acta. 2010;501:24–29. doi: 10.1016/j.tca.2009.12.018. DOI

Bulens M., Delmon B. Exothermic reaction of metakaolinite in presence of mineralizers—Influence of crystallinity. Clays Clay Miner. 1977;25:271–277. doi: 10.1346/CCMN.1977.0250404. DOI

Rodriguez-Navarro C., Cultrone G., Sanchez-Navas A., Sebastian E. TEM study of mullite growth after muscovite breakdown. Am. Mineral. 2003;88:713–724. doi: 10.2138/am-2003-5-601. DOI

Balek V., Pérez-Rodríguez J.L., Pérez-Maqueda A., Šubrt J., Poyato J. Thermal behaviour of ground vermiculite. J. Thermal. Anal. Calorim. 2007;88:819–823. doi: 10.1007/s10973-005-7462-5. DOI

Valášková M., Simha Martynková G., Smetana B., Šudentová S. Influence of vermiculite on the formation of porous cordierites. Appl. Clay Sci. 2009;46:196–201. doi: 10.1016/j.clay.2009.08.003. DOI

Naskar M.K., Chatterjee M. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J. Eur. Ceram. Soc. 2004;24:3499–3508. doi: 10.1016/j.jeurceramsoc.2003.11.029. DOI

Goren R., Gocmez H., Ozgur C. Synthesis of cordierite powder from talc, diatomite and alumina. Ceram. Int. 2006;32:407–409. doi: 10.1016/j.ceramint.2005.03.016. DOI

Johnson S.M., Pask J.A., Moya J.S. Influence of impurities on high-temperature reactions of kaolinite. J. Am. Ceram. Soc. 1982;65:31–35. doi: 10.1111/j.1151-2916.1982.tb09918.x. DOI

Balassone G., Franco E., Mattia C.A., Puliti R. Indialite in xenolithic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features. Am. Mineral. 2004;89:1–6. doi: 10.2138/am-2004-0101. DOI

Benito M., Turrillas X., Cuello G.J., De Aza A.H., De Aza S., Rodríguez M.A. Cordierite synthesis. A time-resolved neutron diffraction study. J. Eur. Ceram. Soc. 2012;32:371–379. doi: 10.1016/j.jeurceramsoc.2011.09.010. DOI

Redfern S.A.T., Salje E., Maresch W., Schreyer W. X-ray powder-diffraction and infrared study of the hexagonal to orthorhombic phase transition in K-bearing cordierite. Am. Miner. 1989;74:1293–1299.

Mercurio D., Thomas P., Mercurio J.P., Frit B., Kim Y.H., Roult G. Powder neutron diffraction study of the thermal expansion of a K-substituted cordierite. J. Mat. Sci. 1989;24:3976–3983. doi: 10.1007/BF01168960. DOI

Daniels P. Structural effects of the incorporation of large-radius alkalis in high cordierite. Am. Miner. 1992;77:407–411.

Gouby I., Thomas P., Mercurio D., Merle-Méjean T., Frit B. Powder X-ray-diffraction and infrared study of the structural evolution in highly K-doped cordierites. Mater. Res. Bull. 1995;30:593–599. doi: 10.1016/0025-5408(95)00037-2. DOI

Schwartz K.B., Leong D.B., McConville R.L. Structural chemistry of synthetic cordierite: Evidence for solid solutions and disordered compositional domains in bi-flux-grown Mg–cordierites. Phys. Chem. Miner. 1994;20:563–574. doi: 10.1007/BF00211852. DOI

Lecomte-Nana G.L., Bonnet J.P., Blanchart P.T. Investigation of the sintering mechanisms of kaolin–muscovite. Appl. Clay Sci. 2011;51:445–451. doi: 10.1016/j.clay.2011.01.007. DOI

Liaw D.-W., Tsai C.-Y., Wei W.-C.J. Thermal insulation of muscovite/glass ceramic foam for solid oxide fuel cell. J. Power Sources. 2011;196:8012–8018. doi: 10.1016/j.jpowsour.2011.05.027. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...