Trp-His covalent adduct in bilirubin oxidase is crucial for effective bilirubin binding but has a minor role in electron transfer
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31548583
PubMed Central
PMC6757100
DOI
10.1038/s41598-019-50105-3
PII: 10.1038/s41598-019-50105-3
Knihovny.cz E-zdroje
- MeSH
- bilirubin metabolismus MeSH
- Hypocreales metabolismus MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- oxidace-redukce MeSH
- oxidoreduktasy působící na CH-CH vazby metabolismus MeSH
- transport elektronů fyziologie MeSH
- vazba proteinů fyziologie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bilirubin oxidase MeSH Prohlížeč
- bilirubin MeSH
- oxidoreduktasy působící na CH-CH vazby MeSH
Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria contains a unique type of covalent link between tryptophan and histidine side chains. The role of this post-translational modification in substrate binding and oxidation is not sufficiently understood. Our structural and mutational studies provide evidence that this Trp396-His398 adduct modifies T1 copper coordination and is an important part of the substrate binding and oxidation site. The presence of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the active site-forming loop 393-398. The results imply that structurally and chemically distinct types of substrates, including bilirubin, utilize the Trp-His adduct mainly for binding and to a smaller extent for electron transfer.
Zobrazit více v PubMed
Murao S, Tanaka N. A new enzyme bilirubin oxidase produced by Myrothecium verrucaria MT-1. Agric. Biol. Chem. 1981;45:2383–2384.
Tanaka N, Murao S. Difference between various copper-containing enzymes (Polyporus laccase, mushroom tyrosinase and cucumber ascorbate oxidase) and bilirubin oxidase. Agric. Biol. Chem. 1983;47:1627–1628.
Guo J, Liang XX, Mo PS, Li GX. Purification and properties of bilirubin oxidase from Myrothecium verrucaria. Appl. Biochem. Biotechnol. 1991;31:135–143. doi: 10.1007/BF02921784. PubMed DOI
Xu F, et al. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim. Biophys. Acta. 1996;1292:303–311. doi: 10.1016/0167-4838(95)00210-3. PubMed DOI
Kataoka K, et al. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Biochemistry. 2005;44:7004–7012. doi: 10.1021/bi0476836. PubMed DOI
Otsuka K, Sugihara T, Tsujino Y, Osakai T, Tamiya E. Electrochemical consideration on the optimum pH of bilirubin oxidase. Anal Biochem. 2007;370:98–106. doi: 10.1016/j.ab.2007.06.011. PubMed DOI
Mizutami K, et al. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal. Acta Cryst. 2010;F66:765–770. PubMed PMC
Cracknell JA, McNamara TP, Lowe ED, Blanford CF. Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Dalton Trans. 2011;40:6668–6675. doi: 10.1039/c0dt01403f. PubMed DOI
Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem. Rev. 1996;96:2563–2605. doi: 10.1021/cr950046o. PubMed DOI
Sakurai T, Kataoka K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Record. 2007;7:220–229. doi: 10.1002/tcr.20125. PubMed DOI
Quintanar L, et al. Shall We Dance? How A Multicopper Oxidase Chooses Its Electron Transfer Partner. Acc. Chem. Res. 2007;40:445–452. doi: 10.1021/ar600051a. PubMed DOI
Bento I, Martins LO, Gato Lopes G, Carrondo MA, Lindley PF. Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans. 2005;7:3507–3513. doi: 10.1039/b504806k. PubMed DOI
Yoon J, Solomon EI. Electronic Structure of the Peroxy Intermediate and Its Correlation to the Native Intermediate in the Multicopper Oxidases: Insights into the Reductive Cleavage of the O-O bond. J. Am. Chem. Soc. 2007;129:13127–13136. doi: 10.1021/ja073947a. PubMed DOI PMC
Kataoka K, et al. Four-electron Reduction of Dioxygen by a Multicopper Oxidase, CueO, and Roles of Asp112 and Glu506 Located Adjacent to the Trinuclear Copper Centre. The journal of biological chemistry. 2009;284:14405–14413. doi: 10.1074/jbc.M808468200. PubMed DOI PMC
dos Santos L, Climent V, Blanford CF, Armstrong FA. Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2010;12:13962–13974. doi: 10.1039/c0cp00018c. PubMed DOI
Bento I, et al. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC Structural Biology. 2010;10:28. PubMed PMC
Iwaki M, et al. ATR-FTIR study of the protonation states of the Glu residue in the multicopper oxidases, CueO and bilirubin oxidase. FEBS Lett. 2010;584:4027–4031. doi: 10.1016/j.febslet.2010.08.018. PubMed DOI
Shimizu A, et al. Myrothecium verrucaria bilirubin oxidase and its mutants for potential copper ligands. Biochemistry. 1999;38:3034–3042. doi: 10.1021/bi9819531. PubMed DOI
Mano N. Features and applications of bilirubin oxidases. Appl Microbiol Biotechnol. 2012;96:301–307. doi: 10.1007/s00253-012-4312-9. PubMed DOI
Doumas BT, Yein F, Perry B, Jendrzejczak B, Kessner A. Determination of the sum of bilirubin sugar conjugates in plasma by bilirubin oxidase. Clin. Chem. 1999;45:1255–1260. PubMed
Kimura S, Iyama S, Yamaguchi Y, Hayashi S, Yanagihara T. Enzymatic assay for conjugated bilirubin (Bc) in serum using bilirubin oxidase (BOD) J Clin Lab Anal. 1999;13:219–223. doi: 10.1002/(SICI)1098-2825(1999)13:5<219::AID-JCLA5>3.0.CO;2-6. PubMed DOI PMC
Liu Y, Huang J, Zhang X. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase. J Biosci Bioeng. 2009;108:496–500. doi: 10.1016/j.jbiosc.2009.06.001. PubMed DOI
Han X, Zhao M, Lu L, Liu Y. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190. Fungal. Biol. 2012;116:863–871. PubMed
Ramirez P, et al. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase. Biochim. Biophys. Acta, Bioenerg. 2008;1777:1364–1369. doi: 10.1016/j.bbabio.2008.06.010. PubMed DOI
Brocato S, Lau C, Atanassov P. Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochim. Acta. 2012;61:44–49. doi: 10.1016/j.electacta.2011.11.074. DOI
Leech D, Kavanagh P, Schuhmann W. Enzymatic fuel cells: Recent progress. Electrochim. Acta. 2012;84:223–234. doi: 10.1016/j.electacta.2012.02.087. DOI
Filip J, Sefcovicova J, Gemeiner P, Tkac J. Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochim. Acta. 2013;87:366–374. doi: 10.1016/j.electacta.2012.09.054. DOI
Mano N, Edembe L. Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosensors and Bioelectronics. 2013;50:478–485. doi: 10.1016/j.bios.2013.07.014. PubMed DOI
Santoro C, Babanova S, Erable B, Schuler A, Atanassov P. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions. Bioelectrochemistry. 2016;108:1–7. doi: 10.1016/j.bioelechem.2015.10.005. PubMed DOI
Mazurenko I, et al. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS Appl. Mater. Interfaces. 2016;8:23074–23085. doi: 10.1021/acsami.6b07355. PubMed DOI
Filip J, Andicsova-Eckstein A, Vikartovska A, Tkac J. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density. Biosens Bioelectron. 2017;89:384–389. doi: 10.1016/j.bios.2016.06.006. PubMed DOI
Mano N, de Poulpiquet A. O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev. 2018;118:2392–2468. doi: 10.1021/acs.chemrev.7b00220. PubMed DOI
Lopez F, Zerria S, Ruff A, Schuhmann W. An O2 Tolerant Polymer/Glucose Oxidase Based Bioanode as Basis for a Self-powered Glucose Sensor. Electroanalysis. 2018;30:1311–1318. doi: 10.1002/elan.201700785. DOI
Cracknell JA, Blanford CF. Developing the mechanism of dioxygen reduction catalyzed by multicopper oxidases using protein film electrochemistry. Chemical Science. 2012;3:1567–1581. doi: 10.1039/c2sc00632d. DOI
Agbo P, Heath JR, Gray HB. Modeling Dioxygen Reduction at Multicopper Oxidase Cathodes. J. Am. Chem. Soc. 2014;136:13882–13887. doi: 10.1021/ja5077519. PubMed DOI
Komori H, Higuchi Y. Structural insights into the O2 reduction mechanism of multicopper oxidase. The Journal of Biochemistry. 2015;158:293–298. doi: 10.1093/jb/mvv079. PubMed DOI
Bertrand T, et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry. 2002;41:7325–7333. doi: 10.1021/bi0201318. PubMed DOI
Enguita FJ, et al. Substrate and Dioxygen Binding to the Endospore Coat Laccase from Bacillus Subtilis. J. Biol. Chem. 2004;279:23472–23476. doi: 10.1074/jbc.M314000200. PubMed DOI
Kallio JP, et al. Structure Function Studies of a Melanocarpus albomyces Laccase Suggest a Pathway for Oxidation of Phenolic Compounds. J. Mol. Biol. 2009;392:895–909. doi: 10.1016/j.jmb.2009.06.053. PubMed DOI
Akter M, et al. Redox potential-dependent formation of an unusual His-Trp bond in bilirubin oxidase. Chemistry. 2018;24:18052–18058. doi: 10.1002/chem.201803798. PubMed DOI
Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2256–2268. doi: 10.1107/S0907444904026460. PubMed DOI
Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal Structure of a Bacterial Endospore Coat Component. J. Biol. Chem. 2003;278:19416–19425. doi: 10.1074/jbc.M301251200. PubMed DOI
Moser CC, Anderson JL, Dutton PL. Guidelines for tunneling in enzymes. Biochim Biophys Acta. 2010;1797:1573–1586. doi: 10.1016/j.bbabio.2010.04.441. PubMed DOI PMC
Skalova T, et al. Structure of laccase from Streptomyces coelicolor after soaking with potassium hexacyanoferrate and at an improved resolution of 2.3 Å. Acta Crystallogr F Struct. Biol. Cryst. Commun. 2011;67:27–32. doi: 10.1107/S1744309110046099. PubMed DOI PMC
Orlikowska M, et al. Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. Int. J. Biol. Macromol. 2018;107:1629–1640. doi: 10.1016/j.ijbiomac.2017.10.024. PubMed DOI
Ravikiran B, Mahalakshmi R. Unusual post-translational protein modification: the benefits of sophistication. RSC Adv. 2014;4:33958–33974. doi: 10.1039/C4RA04694C. DOI
Ehrenshaft M, Deterding LJ, Mason RP. Tripping Up Trp: Modification of Protein Tryptophan Residues by Reactive Oxygen Species, Modes of Detection, and Biological Consequences. Free Radic Biol Med. 2015;89:220–228. doi: 10.1016/j.freeradbiomed.2015.08.003. PubMed DOI PMC
Nguyen NT, Wrona MZ, Dryhurst G. Electrochemical oxidation of tryptophan. J. Electroanal. Chem. 1986;199:101–126. doi: 10.1016/0022-0728(86)87045-0. DOI
Enache TA, Oliveira-Brett AM. Pathways of Electrochemical Oxidation of Indol Compounds. Electroanalysis. 2011;23:1337–1344. doi: 10.1002/elan.201000671. DOI
Yang S, Liu J, Quan X, Zhou J. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations. Langmuir. 2018;34:9818–9828. doi: 10.1021/acs.langmuir.8b01974. PubMed DOI
Xia H, Kitazumi Y, Shirai O, Kano K. Enhanced direct electron transfer-type bioelectrocatalysis of bilirubin oxidase on negatively charged aromatic compound-modified carbon electrode. J. Electroanal. Chem. 2016;763:104–109. doi: 10.1016/j.jelechem.2015.12.043. DOI
Sakai K, Xia H, Kitazumi Y, Shirai O, Kano K. Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochimica Acta. 2018;271:305–311. doi: 10.1016/j.electacta.2018.03.163. DOI
Kovaľ T, et al. Structural and Catalytic Properties of S1 Nuclease from aspergillus oryzae responsible for substrate recognition, cleavage, non–specificity, and inhibition. PLoS ONE. 2016;11:e0168832. doi: 10.1371/journal.pone.0168832. PubMed DOI PMC
Wang J, et al. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD+ regeneration. Biotechnol. Lett. 2016;38:1315–1320. doi: 10.1007/s10529-016-2106-3. PubMed DOI
Reiss R, Ihssen J, Thöny-Meyer L. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnology. 2011;11:9. doi: 10.1186/1472-6750-11-9. PubMed DOI PMC
Durand F, et al. Bilirubin oxidase from Bacillus pumillus: A promising enzyme for elaboration of efficient cathodes in Biofuel cells. Biosens Bioelectron. 2012;35:140–146. doi: 10.1016/j.bios.2012.02.033. PubMed DOI PMC
Sigma-Aldrich bilirubin oxidase assay protocol, www.sigmaaldrich.com.
Fejfarová K, et al. Crystallization of nepenthesin I using a low-pH crystallization screen. Acta Crystallogr F Struct. Biol. Cryst. Commun. 2016;72:24–28. doi: 10.1107/S2053230X15022323. PubMed DOI PMC
Mueller U, et al. Facilities for macromolecular crystallography at the Helmholtz–Zentrum Berlin. J Synchrotron Radiat. 2012;19:442–449. doi: 10.1107/S0909049512006395. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013;69:1204–1214. doi: 10.1107/S0907444913000061. PubMed DOI PMC
Vagin A, Teplyakov A. MOLREP: an Automated Program for Molecular Replacement. J. Appl. Cryst. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Murshudov GN, Vagin A, Dodson EJ. Refinement of Macromolecular Structures by the Maximum-Likelihood method. Acta Crystallogr. D Biol. Crystallogr. 1997;53:240–255. doi: 10.1107/S0907444996012255. PubMed DOI
Chen VB, Arendall WB, Headd JJ, Keedy DA. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Berman HM, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nature Structural Biology. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI
Afonine PV, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444910026582. PubMed DOI PMC