Theory of electrophoretic focusing on an inverse electromigration dispersion profile
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
18-13135S
Grantová Agentura České Republiky - International
RVO:68081715
Akademie Věd České Republiky - International
PubMed
31550388
DOI
10.1002/elps.201900229
Knihovny.cz E-zdroje
- Klíčová slova
- Electromigration dispersion, Electrophoresis theory, Focusing, Separation methods,
- MeSH
- elektrická vodivost MeSH
- elektroforéza kapilární metody MeSH
- elektroosmóza MeSH
- hydrodynamika MeSH
- isoelektrická fokusace metody MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Electrophoretic focusing on an inverse electromigration dispersion (EMD) profile is based on a principle different from those of other electrophoretic separation methods. It has already proved its applicability in analytical practice by offering competitive separation performance and sensitivity and specific selectivity. It can be classified as an intermediate between field-driven and equilibrium gradient methods and is therefore interesting from the viewpoint of theory of separation methods. This work presents a comprehensive theoretical description of electrophoretic focusing on an inverse EMD profile comprising properties of the electrolyte system, formed gradients, and focused analyte zones. The separation properties are described in terms of resolution and peak capacity and their dependence on system and analyte properties is discussed from the viewpoint of how the counteracting phenomena of electromigration and dispersion are affected by electric current, voltage, and hydrodynamic and electroosmotic flow. The overall performance of the present method is shown to be comparable with other electrophoretic separation methods like zone electrophoresis or isoelectric focusing.
Zobrazit více v PubMed
Malá, Z., Křivánková, L., Gebauer, P., Boček, P., Electrophoresis 2007, 28, 243-253.
Schumacher, E., Helv. Chim. Acta 1957, 40, 221-228.
Gebauer, P., Malá, Z., Šlampová, A., Boček, P., Electrophoresis 2008, 29, 1067-1076.
Gebauer, P., Malá, Z., Boček, P., Electrophoresis 2010, 31, 886-892.
Malá, Z., Gebauer, P., Boček, P., Anal. Chim. Acta 2016, 935, 249-257.
Giddings, J. C., Sep. Sci. 1969, 4, 181-189.
Giddings, J. C., Dahlgren, K., Sep. Sci. 1971, 6, 345-356.
Malá, Z., Gebauer, P., J. Chromatogr. A 2018, 1563, 191-197.
Hruška, V., Jaroš, M., Gaš, B., Electrophoresis 2006, 27, 984-991.
Hruška, V., Beneš, M., Svobodová, J., Zusková, I., Gaš, B., Electrophoresis 2012, 33, 938-947.
Mosher, R. A., Zhang, C. X., Caslavska, J., Thormann, W., J. Chromatogr. A 1995, 716, 17-26.
Gebauer, P., Borecká, P., Boček, P., Anal. Chem. 1998, 70, 3397-3406.
Štědrý, M., Jaroš, M., Gaš, B., J. Chromatogr. A 2002, 960, 187-198.
Hruška, V., Riesová, M., Gaš, B., Electrophoresis 2012, 33, 923-930.
Chien, R. L., Helmer, J. C., Anal. Chem. 1991, 63, 1354-1361.
Grushka, E., Anal. Chem. 1970, 42, 1142-1147.
Giddings, J. C., J. Chromatogr. A 1989, 480, 21-33.