Thermodynamic Properties of Stoichiometric Non-Superconducting Phase Y2BaCuO5

. 2019 Sep 27 ; 12 (19) : . [epub] 20190927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31569669

Grantová podpora
17-13161S Grantová Agentura České Republiky
TK01030200 Technologická Agentura České Republiky

Y2BaCuO5 often occurs as an accompanying phase of the well-known high-temperature superconductor YBa2Cu3O7 (also known as YBCO). Y2BaCuO5, easily identifiable due to its characteristic green coloration, is often referred to as 'green phase' or 'Y-211'. In this contribution, Y2BaCuO5 phase was studied in detail with a focus on its thermal and thermodynamic properties. Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed in the study of sample's morphology and chemical composition. XRD data were further analyzed and lattice parameters refined by Rietveld analysis. Simultaneous thermal analysis was employed to study thermal stability. Particle size distribution was analyzed by laser diffraction. Finally, thermodynamic properties, namely heat capacity and relative enthalpy, were measured by drop calorimetry, differential scanning calorimetry (DSC), and physical properties measurement system (PPMS). Enthalpy of formation was assessed from ab-initio DFT calculations.

Zobrazit více v PubMed

Yuan C., Wu H.B., Xie Y., Lou X.W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 2014;53:1488–1504. doi: 10.1002/anie.201303971. PubMed DOI

Zhao Y., Li X., Yan B., Xiong D., Li D., Lawes S., Sun X. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016;6:1502175. doi: 10.1002/aenm.201502175. DOI

Jankovský O., Sedmidubský D., Šimek P., Sofer Z., Ulbrich P., Bartůněk V. Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceram. Int. 2015;41:595–601. doi: 10.1016/j.ceramint.2014.08.108. DOI

Bartůněk V., Huber Š., Sedmidubský D., Sofer Z., Šimek P., Jankovský O. CoO and Co3O4 nanoparticles with a tunable particle size. Ceram. Int. 2014;40:12591–12595. doi: 10.1016/j.ceramint.2014.04.082. DOI

Kang M.-G., Cho K.-H., Kim J.-S., Nahm S., Yoon S.-J., Kang C.-Y. Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater. 2014;73:251–258. doi: 10.1016/j.actamat.2014.04.008. DOI

Prasad K.R., Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun. 2004;6:1004–1008. doi: 10.1016/j.elecom.2004.07.017. DOI

Rao K., Smakula A. Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals. J. Appl. Phys. 1965;36:2031–2038. doi: 10.1063/1.1714397. DOI

Van Schalkwijk W., Scrosati B. Advances in Lithium-Ion Batteries. Kluwer Academic/Plenum Publisher; London, UK: 2002. Advances in lithium ion batteries introduction; pp. 1–5.

Andersen N.I., Serov A., Atanassov P. Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media. Appl. Catal. B Environ. 2015;163:623–627. doi: 10.1016/j.apcatb.2014.08.033. DOI

Jayalakshmi M., Rao M.M., Venugopal N., Kim K.-B. Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sour. 2007;166:578–583. doi: 10.1016/j.jpowsour.2006.11.025. DOI

Ito S., Makari Y., Kitamura T., Wada Y., Yanagida S. Fabrication and characterization of mesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells. J. Mater. Chem. 2004;14:385–390. doi: 10.1039/b311090g. DOI

Rusevova K., Kopinke F.-D., Georgi A. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe (II)/Fe (III) ratio on catalytic performance. J. Hazard. Mater. 2012;241:433–440. doi: 10.1016/j.jhazmat.2012.09.068. PubMed DOI

Leitner J., Bartůněk V., Sedmidubský D., Jankovský O. Thermodynamic properties of nanostructured ZnO. Appl. Mater. Today. 2018;10:1–11. doi: 10.1016/j.apmt.2017.11.006. DOI

Bednorz J.G., Müller K.A. Possible highT c superconductivity in the Ba−La−Cu−O system. Z. Phys. B Condens. Matter. 1986;64:189–193. doi: 10.1007/BF01303701. DOI

Rotter M., Tegel M., Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008;101:107006. doi: 10.1103/PhysRevLett.101.107006. PubMed DOI

Tallapally V., Damma D., Darmakkolla S.R. Facile synthesis of size-tunable tin arsenide nanocrystals. Chem. Commun. 2019;55:1560–1563. doi: 10.1039/C8CC08101H. PubMed DOI

Sleight A.W., Gillson J., Bierstedt P. High-temperature superconductivity in the BaPb1−xBixO3 system. Solid State Commun. 1993;88:841–842. doi: 10.1016/0038-1098(93)90253-J. DOI

Paglione J., Greene R.L. High-temperature superconductivity in iron-based materials. Nat. Phys. 2010;6:645. doi: 10.1038/nphys1759. DOI

Jankovský O., Antončík F., Hlásek T., Plecháček V., Sedmidubský D., Huber Š., Lojka M., Bartůněk V. Synthesis and properties of YBa2Cu3O7-δ–Y2Ba4CuWO10. 8 superconducting composites. J. Eur. Ceram. Soc. 2018;38:2541–2546. doi: 10.1016/j.jeurceramsoc.2018.01.026. DOI

Drozdov A., Eremets M., Troyan I., Ksenofontov V., Shylin S. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015;525:73. doi: 10.1038/nature14964. PubMed DOI

Wang X., Liu Q., Lv Y., Gao W., Yang L., Yu R., Li F., Jin C. The superconductivity at 18 K in LiFeAs system. Solid State Commun. 2008;148:538–540. doi: 10.1016/j.ssc.2008.09.057. DOI

Lim C.S., Wang L., Chua C.K., Sofer Z., Jankovský O., Pumera M. High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction. J. Mater. Chem. A. 2015;3:8346–8352. doi: 10.1039/C4TA06767C. DOI

Goldschmidt D., Reisner G., Direktovitch Y., Knizhnik A., Gartstein E., Kimmel G., Eckstein Y. Tetragonal superconducting family (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy: The effect of cosubstitution on the transition temperature. Phys. Rev. B. 1993;48:532. doi: 10.1103/PhysRevB.48.532. PubMed DOI

Mirmelshtein A., Podlesnyak A., Bobrovskii V., Davydov S., Karkin A., Kozhevnikov V., Goshchitskii B., Cheshnitskii S. Electrical crystal field effects in high-temperature superconductor HoBa2Cu3O7. Phys. C Supercond. 1988;153:176–177. doi: 10.1016/0921-4534(88)90539-4. DOI

Maple M., Dalichaouch Y., Ferreira J., Hake R., Lee B., Neumeier J., Torikachvili M., Yang K., Zhou H., Guertin R. RBa2Cu3O7–δ (R = Rare earth) High-Tc magnetic superconductors; Proceedings of the Yamada Conference XVIII on Superconductivity in Highly Correlated Fermion Systems; Sendai, Japan. 31 August–3 September 1987; Amsterdam, The Netherlands: Elsevier; 1987. pp. 155–162.

Jankovský O., Sedmidubský D., Rubešová K., Sofer Z., Leitner J., Ružička K., Svoboda P. Structure, non-stoichiometry and thermodynamic properties of Bi1. 85Sr2Co1.85O7. 7−δ ceramics. Thermochim. Acta. 2014;582:40–45. doi: 10.1016/j.tca.2014.02.022. DOI

Jankovský O., Sedmidubský D., Sofer Z., Šimek P., Hejtmánek J. Thermodynamic behavior of Ca3Co3. 93O9+δ ceramics. Ceram. Silik. 2012;56:139–144.

Jankovský O., Sedmidubský D., Sofer Z. Phase diagram of the pseudobinary system Bi–Co–O. J. Eur. Ceram. Soc. 2013;33:2699–2704. doi: 10.1016/j.jeurceramsoc.2013.04.035. DOI

Kamihara Y., Hiramatsu H., Hirano M., Kawamura R., Yanagi H., Kamiya T., Hosono H. Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 2006;128:10012–10013. doi: 10.1021/ja063355c. PubMed DOI

Wu M.-K., Ashburn J.R., Torng C., Hor P.H., Meng R.L., Gao L., Huang Z.J., Wang Y., Chu A. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987;58:908. doi: 10.1103/PhysRevLett.58.908. PubMed DOI

Schneemeyer L., Waszczak J., Siegrist T., Van Dover R., Rupp L., Batlogg B., Cava R.J., Murphy D. Superconductivity in YBa2Cu3O7 single crystals. Nature. 1987;328:601. doi: 10.1038/328601a0. DOI

Watkins S., Fronczek F., Wheelock K., Goodrich R., Hamilton W., Johnson W. Structure of Y2BaCuO5. Acta Crystallogr. Sect. C. 1988;44:3–6.

Lee D., Selvamanickam V., Salama K. Influences of Y2BaCuO5 particle size and content on the transport critical current density of YBa2Cu3Ox superconductor. Phys. C Supercond. 1992;202:83–96. doi: 10.1016/0921-4534(92)90299-R. DOI

McGinn P., Chen W., Zhu N., Tan L., Varanasi C., Sengupta S. Microstructure and critical current density of zone melt textured YBa2Cu3O6+x/Y2BaCuO5 with BaSnO3 additions. Appl. Phys. Lett. 1991;59:120–122. doi: 10.1063/1.105548. DOI

Jin S., Tiefel T., Kammlott G. Effect of Y2BaCuO5 inclusions on flux pinning in YBa2Cu3O7−δ. Appl. Phys. Lett. 1991;59:540–542. doi: 10.1063/1.105432. DOI

Hlásek T., Shi Y., Durrell J.H., Dennis A.R., Namburi D.K., Plecháček V., Rubešová K., Cardwell D.A., Jankovský O. Cost-effective isothermal top-seeded melt-growth of single-domain YBCO superconducting ceramics. Solid State Sci. 2019;88:74–80. doi: 10.1016/j.solidstatesciences.2018.12.008. DOI

Golosovsky I., Böni P., Fischer P. Magnetic structure of Y2BaCuO5. Solid State Commun. 1993;87:1035–1037. doi: 10.1016/0038-1098(93)90556-3. DOI

Štejfa V., Fulem M., Růžička K., Červinka C. Thermodynamic study of selected monoterpenes III. J. Chem. Thermodyn. 2014;79:280–289. doi: 10.1016/j.jct.2014.04.022. DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Dudarev S., Botton G., Savrasov S., Humphreys C., Sutton A. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B. 1998;57:1505. doi: 10.1103/PhysRevB.57.1505. DOI

Forsyth J., Brown P., Wanklyn B. Magnetism in cupric oxide. J. Phys. C. 1988;21:2917. doi: 10.1088/0022-3719/21/15/023. DOI

Martin C. Simple treatment of anharmonic effects on the specific heat. J. Phys. Condens. Matter. 1991;3:5967. doi: 10.1088/0953-8984/3/32/005. DOI

Hengzhong Z., Zheng F., Pingmin Z., Xinmin C. Enthalpies of formation of some phases present in the Y−Ba−Cu−O system by solution calorimetry. J. Solut. Chem. 1995;24:565–578. doi: 10.1007/BF00973207. DOI

Zhou Z., Navrotsky A. Thermochemistry of the Y2O3–BaO–Cu–O system. J. Mater. Res. 1992;7:2920–2935. doi: 10.1557/JMR.1992.2920. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...