Identification of HIVEP2 as a dopaminergic transcription factor related to substance use disorders in rats and humans

. 2019 Oct 04 ; 9 (1) : 247. [epub] 20191004

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31586043

Grantová podpora
R24 AA015512 NIAAA NIH HHS - United States
R01 DA021409 NIDA NIH HHS - United States
U24 AA015512 NIAAA NIH HHS - United States
U01 AA013522 NIAAA NIH HHS - United States
U24 AA013522 NIAAA NIH HHS - United States

Odkazy

PubMed 31586043
PubMed Central PMC6778090
DOI 10.1038/s41398-019-0573-8
PII: 10.1038/s41398-019-0573-8
Knihovny.cz E-zdroje

Playing an important role in the etiology of substance use disorder (SUD), dopamine (DA) neurons are subject to various regulations but transcriptional regulations are largely understudied. For the first time, we report here that the Human Immunodeficiency Virus Type I Enhancer Binding Protein 2 (HIVEP2) is a dopaminergic transcriptional regulator. HIVEP2 is expressed in both the cytoplasm and nuclei of DA neurons. Therein, HIVEP2 can target the intronic sequence GTGGCTTTCT of SLC6A3 and thereby activate the gene. In naive rats from the bi-directional selectively bred substance-preferring P vs -nonpreferring NP rat model of substance abuse vulnerability, increased gene activity in males was associated with the vulnerability, whereas decreased gene activity in the females was associated with the same vulnerability. In clinical subjects, extensive and significant HIVEP2-SLC6A3 interactions were observed for SUD. Collectively, HIVEP2-mediated transcriptional mechanisms are implicated in dopaminergic pathophysiology of SUD.

Zobrazit více v PubMed

Wang Q, et al. Paraquat and MPTP induce neurodegeneration and alteration in the expression profile of microRNAs: the role of transcription factor Nrf2. NPJ Parkinson’s. Dis. 2017;3:31. doi: 10.1038/s41531-017-0033-1. PubMed DOI PMC

Lupu D, et al. Fluoxetine affects differentiation of midbrain dopaminergic neurons in vitro. Mol. Pharmacol. 2018;94:1220–1231. doi: 10.1124/mol.118.112342. PubMed DOI

Dang DK, et al. PKCdelta-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic. Biol. Med. 2018;115:318–337. doi: 10.1016/j.freeradbiomed.2017.12.018. PubMed DOI PMC

Huang B, et al. Bisphenol a represses dopaminergic neuron differentiation from human embryonic stem cells through downregulating the expression of insulin-like growth factor 1. Mol. Neurobiol. 2017;54:3798–3812. doi: 10.1007/s12035-016-9898-y. PubMed DOI

Kumar A, et al. GDNF overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function. PLoS Genet. 2015;11:e1005710. doi: 10.1371/journal.pgen.1005710. PubMed DOI PMC

Wagenfuhr L, Meyer AK, Marrone L, Storch A. Oxygen tension within the neurogenic niche regulates dopaminergic neurogenesis in the developing midbrain. Stem cells Dev. 2016;25:227–238. doi: 10.1089/scd.2015.0214. PubMed DOI PMC

Xiong J, et al. Fenpropathrin, A Widely Used Pesticide, Causes Dopaminergic Degeneration. Mol. Neurobiol. 2016;53:995–1008. doi: 10.1007/s12035-014-9057-2. PubMed DOI PMC

Bannon MJ, et al. Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proc. Natl Acad. Sci. USA. 2002;99:6382–6385. doi: 10.1073/pnas.092654299. PubMed DOI PMC

Wang J, Bannon MJSp1. and Sp3 activate transcription of the human dopamine transporter gene. J. neurochemistry. 2005;93:474–482. doi: 10.1111/j.1471-4159.2005.03051.x. PubMed DOI

Jacobs FM, et al. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development. 2009;136:2363–2373. doi: 10.1242/dev.037556. PubMed DOI PMC

Kanno K, Ishiura S. Differential effects of the HESR/HEY transcription factor family on dopamine transporter reporter gene expression via variable number of tandem repeats. J. Neurosci. Res. 2011;89:562–575. doi: 10.1002/jnr.22593. PubMed DOI

Zhao Ying, Yu Jinlong, Zhao Juan, Chen Xiaowu, Xiong Nian, Wang Tao, Qing Hong, Lin Zhicheng. Intragenic Transcriptional cis-Antagonism Across SLC6A3. Molecular Neurobiology. 2018;56(6):4051–4060. doi: 10.1007/s12035-018-1357-5. PubMed DOI PMC

Liu K, et al. AZI2)3’UTR is a new SLC6A3 downregulator associated with an epistatic protection against substance use disorders. Mol. Neurobiol. 2018;55:5611–5622. doi: 10.1007/s12035-017-0781-2. PubMed DOI PMC

Fuke S, Sasagawa N, Ishiura S. Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3’ non-coding polymorphic region of the human dopamine transporter (DAT1) gene. J. Biochem. 2005;137:205–216. doi: 10.1093/jb/mvi020. PubMed DOI

Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog. Neurobiol. 2005;77:128–138. doi: 10.1016/j.pneurobio.2005.09.001. PubMed DOI

Jimenez-Jimenez FJ, Garcia-Martin E, Alonso-Navarro H, Agundez JA. PITX3 and risk for Parkinson’s disease: a systematic review and meta-analysis. Eur. Neurol. 2014;71:49–56. doi: 10.1159/000353981. PubMed DOI

Rouillard C, et al. Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson’s disease. Exp. Neurol. 2018;304:143–153. doi: 10.1016/j.expneurol.2018.03.008. PubMed DOI

Rivetti di Val Cervo P, et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol. 2017;35:444–452. doi: 10.1038/nbt.3835. PubMed DOI

Chabrat A, et al. Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. Nat. Commun. 2017;8:933. doi: 10.1038/s41467-017-01042-0. PubMed DOI PMC

Miller ML, et al. Ventral striatal regulation of CREM mediates impulsive action and drug addiction vulnerability. Mol. psychiatry. 2018;23:1328–1335. doi: 10.1038/mp.2017.80. PubMed DOI PMC

Stotz A, Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990;95:91–98. doi: 10.1016/0378-1119(90)90418-Q. PubMed DOI

Zhao Y, Zhou Y, Xiong N, Lin Z. Identification of an intronic cis-acting element in the human dopamine transporter gene. Mol. Biol. Rep. 2012;39:5393–5399. doi: 10.1007/s11033-011-1339-4. PubMed DOI PMC

Zhao Y, et al. Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics. 2013;14:1481–1494. doi: 10.2217/pgs.13.141. PubMed DOI PMC

Liu QR, et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci. Rep. 2017;7:17410. doi: 10.1038/s41598-017-17796-y. PubMed DOI PMC

Leng Y, Marinova Z, Reis-Fernandes MA, Nau H, Chuang DM. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci. Lett. 2010;476:127–132. doi: 10.1016/j.neulet.2010.04.013. PubMed DOI PMC

Nomura N, et al. HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J. Biol. Chem. 1991;266:8590–8594. PubMed

Zhou Y, et al. Ventral midbrain correlation between genetic variation and expression of the dopamine transporter gene in cocaine-abusing versus non-abusing subjects. Addiction Biol. 2014;19:122–131. doi: 10.1111/j.1369-1600.2011.00391.x. PubMed DOI PMC

Bell RL, et al. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology. 2017;122:201–243. doi: 10.1016/j.neuropharm.2017.02.004. PubMed DOI PMC

McBride WJ, Rodd ZA, Bell RL, Lumeng L, Li TK. The alcohol-preferring (P) and high-alcohol-drinking (HAD) rats - Animal models of alcoholism. Alcohol. 2014;48:209–215. doi: 10.1016/j.alcohol.2013.09.044. PubMed DOI PMC

Gordon TL, Meehan SM, Schechter MD. P and NP rats respond differently to the discriminative stimulus effects of nicotine. Pharmacol., Biochem., Behav. 1993;45:305–308. doi: 10.1016/0091-3057(93)90243-M. PubMed DOI

Gordon TL, Meehan SM, Schechter MD. Differential effects of nicotine but not cathinone on motor activity of P and NP rats. Pharmacol., Biochem., Behav. 1993;44:657–659. doi: 10.1016/0091-3057(93)90182-S. PubMed DOI

Le AD, et al. Increased vulnerability to nicotine self-administration and relapse in alcohol-naive offspring of rats selectively bred for high alcohol intake. J. Neurosci. 2006;26:1872–1879. doi: 10.1523/JNEUROSCI.4895-05.2006. PubMed DOI PMC

Stewart RB, Li TK. The neurobiology of alcoholism in genetically selected rat models. Alcohol Health Res. World. 1997;21:169–176. PubMed PMC

Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addiction Biol. 2006;11:270–288. doi: 10.1111/j.1369-1600.2005.00029.x. PubMed DOI

Moore CF, Lynch WJ. Alcohol preferring (P) rats as a model for examining sex differences in alcohol use disorder and its treatment. Pharmacol., Biochem., Behav. 2015;132:1–9. doi: 10.1016/j.pbb.2015.02.014. PubMed DOI PMC

Bell RL, et al. Modeling binge-like ethanol drinking by peri-adolescent and adult P rats. Pharmacol., Biochem., Behav. 2011;100:90–97. doi: 10.1016/j.pbb.2011.07.017. PubMed DOI PMC

van ‘t Veer LJ, Lutz PM, Isselbacher KJ, Bernards R. Structure and expression of major histocompatibility complex-binding protein 2, a 275-kDa zinc finger protein that binds to an enhancer of major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA. 1992;89:8971–8975. doi: 10.1073/pnas.89.19.8971. PubMed DOI PMC

Takagi T, et al. Schnurri-2 mutant mice are hypersensitive to stress and hyperactive. Brain Res. 2006;1108:88–97. doi: 10.1016/j.brainres.2006.06.018. PubMed DOI

Takao K, et al. Deficiency of schnurri-2, an MHC enhancer binding protein, induces mild chronic inflammation in the brain and confers molecular, neuronal, and behavioral phenotypes related to schizophrenia. Neuropsychopharmacology. 2013;38:1409–1425. doi: 10.1038/npp.2013.38. PubMed DOI PMC

Srivastava S, et al. Loss-of-function variants in HIVEP2 are a cause of intellectual disability. Eur. J. Hum. Genet. 2016;24:556–561. doi: 10.1038/ejhg.2015.151. PubMed DOI PMC

Nakao A, et al. Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability. Mol. Brain. 2017;10:60. doi: 10.1186/s13041-017-0339-2. PubMed DOI PMC

Kobayashi K, Takagi T, Ishii S, Suzuki H, Miyakawa T. Attenuated bidirectional short-term synaptic plasticity in the dentate gyrus of Schnurri-2 knockout mice, a model of schizophrenia. Mol. Brain. 2018;11:56. doi: 10.1186/s13041-018-0400-9. PubMed DOI PMC

Steinfeld H, et al. Mutations in HIVEP2 are associated with developmental delay, intellectual disability, and dysmorphic features. Neurogenetics. 2016;17:159–164. doi: 10.1007/s10048-016-0479-z. PubMed DOI PMC

Kent Jack W. Rare variants, common markers: synthetic association and beyond. Genetic Epidemiology. 2011;35(S1):S80–S84. doi: 10.1002/gepi.20655. PubMed DOI PMC

Takeuchi F, Kobayashi S, Ogihara T, Fujioka A, Kato N. Detection of common single nucleotide polymorphisms synthesizing quantitative trait association of rarer causal variants. Genome Res. 2011;21:1122–1130. doi: 10.1101/gr.115832.110. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...