Performance of landscape composition metrics for predicting water quality in headwater catchments

. 2019 Oct 08 ; 9 (1) : 14405. [epub] 20191008

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31594979
Odkazy

PubMed 31594979
PubMed Central PMC6783472
DOI 10.1038/s41598-019-50895-6
PII: 10.1038/s41598-019-50895-6
Knihovny.cz E-zdroje

Land use is a predominant threat to the ecological integrity of streams and rivers. Understanding land use-water quality interactions is essential for the development and prioritization of management strategies and, thus, the improvement of water quality. Weighting schemes for land use have recently been employed as methods to advance the predictive power of empirical models, however, their performance has seldom been explored for various water quality parameters. In this work, multiple landscape composition metrics were applied within headwater catchments of Central Europe to investigate how weighting land use with certain combinations of spatial and topographic variables, while implementing alternate distance measures and functions, can influence predictions of water quality. The predictive ability of metrics was evaluated for eleven water quality parameters using linear regression. Results indicate that stream proximity, measured with Euclidean distance, in combination with slope or log-transformed flow accumulation were dominant factors affecting the concentrations of pH, total phosphorus, nitrite and orthophosphate phosphorus, whereas the unweighted land use composition was the most effective predictor of calcium, electrical conductivity, nitrates and total suspended solids. Therefore, both metrics are recommended when examining land use-water quality relationships in small, submontane catchments and should be applied according to individual water quality parameter.

Zobrazit více v PubMed

Hynes H. The stream and its valley. Verhandlungen Int. Vereinigung Theor. und Angew. Limnol. 1975;19:1–15.

Allan JD. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. 2004;35:257–284.

Gergel SE. Spatial and non-spatial factors: When do they affect landscape indicators of watershed loading? Landsc. Ecol. 2005;20:177–189.

Ripl W. Water: The bloodstream of the biosphere. Philos. Trans. R. Soc. B Biol. Sci. 2003;358:1921–1934. doi: 10.1098/rstb.2003.1378. PubMed DOI PMC

Grill G, et al. Mapping the world’s free-flowing rivers. Nature. 2019;569:215–221. doi: 10.1038/s41586-019-1111-9. PubMed DOI

Basnyat P, Teeter LD, Flynn KM, Lockaby BG. Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries. Environ. Manage. 1999;23:539–549. doi: 10.1007/s002679900208. PubMed DOI

Ahearn DS, et al. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada. California. 2005;313:234–247.

Giri S, Qiu Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manage. 2016;173:41–48. doi: 10.1016/j.jenvman.2016.02.029. PubMed DOI

Sun Y, Guo Q, Liu J, Wang R. Scale effects on spatially varying relationships between urban landscape patterns and water quality. Environ. Manage. 2014;54:272–287. doi: 10.1007/s00267-014-0287-x. PubMed DOI

King R. Spatial Considerations for Linking Watershed Land Cover To Ecological Indicators in Streams Galley a-105. Ecol. Appl. 2004;15:104–120.

Peterson EE, Pearse AR. IDW-Plus: An ArcGIS Toolset for Calculating Spatially Explicit Watershed Attributes for Survey Sites. J. Am. Water Resour. Assoc. 2017;53:1241–1249. doi: 10.1111/1752-1688.12558. DOI

Huang J, Huang Y, Pontius RG, Zhang Z. Geographically weighted regression to measure spatial variations in correlations between water pollution versus land use in a coastal watershed. Ocean Coast. Manag. 2015;103:14–24. doi: 10.1016/j.ocecoaman.2014.10.007. DOI

Allan JD, Erickson DL, Fay J. The influence of catchment and use on stream integrity across multiple spatial scales. Freshw. Biol. 1997;37:149–161. doi: 10.1046/j.1365-2427.1997.d01-546.x. DOI

Strayer DL, et al. Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues. Ecosystems. 2003;6:407–423. doi: 10.1007/PL00021506. DOI

Kändler M, et al. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017;586:1316–1325. doi: 10.1016/j.scitotenv.2016.10.221. PubMed DOI

Sheldon F, et al. Identifying the spatial scale of land use that most strongly influences overall river ecosystem health score. Ecol. Appl. 2012;22:2188–2203. doi: 10.1890/11-1792.1. PubMed DOI

Van Sickle J, Burch Johnson C. Parametric distance weighting of landscape influence on streams. Landsc. Ecol. 2008;23:427–438. doi: 10.1007/s10980-008-9200-4. DOI

Walsh CJ, Webb JA. Spatial weighting of land use and temporal weighting of antecedent discharge improves prediction of stream condition. Landsc. Ecol. 2014;29:1171–1185. doi: 10.1007/s10980-014-0050-y. DOI

Peterson EE, Sheldon F, Darnell R, Bunn SE, Harch BD. A comparison of spatially explicit landscape representation methods and their relationship to stream condition. Freshw. Biol. 2011;56:590–610. doi: 10.1111/j.1365-2427.2010.02507.x. DOI

Helin J, Hyytiäinen K, Korpela EL, Kuussaari M. Model for quantifying the synergies between farmland biodiversity conservation and water protection at catchment scale. J. Environ. Manage. 2013;131:307–317. doi: 10.1016/j.jenvman.2013.09.029. PubMed DOI

Thompson J, Pelc CE, Brogan WR, Jordan TE. The multiscale effects of stream restoration on water quality. Ecol. Eng. 2018;124:7–18. doi: 10.1016/j.ecoleng.2018.09.016. DOI

Mattson KM, Angermeier PL. Integrating human impacts and ecological integrity into a risk-based protocol for conservation planning. Environ. Manage. 2007;39:125–138. doi: 10.1007/s00267-005-0238-7. PubMed DOI

Bierschenk AM, Savage C, Townsend CR, Matthaei CD. Intensity of Land Use in the Catchment Influences Ecosystem Functioning Along a Freshwater-Marine Continuum. Ecosystems. 2012;15:637–651. doi: 10.1007/s10021-012-9536-0. DOI

Soldán T, et al. Aquatic insects of the Bohemian Forest glacial lakes: Diversity, long-term changes, and influence of acidification. Silva Gabreta. 2012;18:123–283.

Finn DS, Blouin MS, Lytle DA. Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshw. Biol. 2007;52:1881–1897. doi: 10.1111/j.1365-2427.2007.01813.x. DOI

Hubalová, P.; Janíček, T.; Pokorný, D.; Fousová, E.; Prošek, V. Report on the state of water management in the Czech Republic. (2018).

Čada, V. & Svoboda, M. Structure and origin of mountain Norway spruce in the Bohemian Forest Structure and origin of mountain Norway spruce in the Bohemian Forest. For. Sci. (2011).

Simon OP, et al. The status of freshwater pearl mussel in the Czech Republic: Several successfully rejuvenated populations but the absence of natural reproduction. Limnologica. 2015;50:11–20. doi: 10.1016/j.limno.2014.11.004. DOI

Vacek S, Podrazsky, Vladimir V. Forest ecosystems of the Šumava Mts. and their management S. J. For. Sci. 2003;49:291–301. doi: 10.17221/4703-JFS. DOI

McConnell DA, Ferris CP, Doody DG, Elliott CT, Matthews DI. Phosphorus Losses from Low-Emission Slurry Spreading Techniques. J. Environ. Qual. 2013;42:446. doi: 10.2134/jeq2012.0024. PubMed DOI

Žlábek P, Bystřický V, Ondr P, Kvítek T, Lechner P. Long-term progress in water quality after grassing and fertilization reduction in spring areas of the Šumava Mountains. Soil Water Res. 2008;3:121–128. doi: 10.17221/3/2008-SWR. DOI

Kroupova V, Klimes F, Kral M. Models of cattle breeding in Sumava National Park. Silbva Gabreta. 1996;1:249–255.

Kopáček J, et al. Chemical composition of atmospheric deposition in the catchments of Plešné and Čertovo lakes in 1998–2012. Silva Gabreta. 2013;19:1–23.

Kvítek T, et al. Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Phys. Chem. Earth. 2009;34:541–551. doi: 10.1016/j.pce.2008.07.003. DOI

ÚNMZ. Czech Office for Standards, Metrology and Testing (2018). Available at, http://www.unmz.cz/office/en (Accessed: 18th July 2018).

Oddělení GIS - O projektu & VÚV T.G.Masaryka. DIBAVOD. Available at, http://www.dibavod.cz/ (Accessed: 22nd July 2018).

Zhang H, et al. An integrated algorithm to evaluate flow direction and flow accumulation in flat regions of hydrologically corrected DEMs. CATENA. 2017;151:174–181. doi: 10.1016/j.catena.2016.12.009. DOI

Yu S, Xu Z, Wu W, Zuo D. Effect of land use on the seasonal variation of streamwater quality in the Wei River basin, China. Proc. Int. Assoc. Hydrol. Sci. 2015;368:454–459.

Ding J, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016;551–552:205–216. doi: 10.1016/j.scitotenv.2016.01.162. PubMed DOI

Ai L, Shi ZH, Yin W, Huang X. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. J. Hydrol. 2015;523:398–408. doi: 10.1016/j.jhydrol.2015.01.082. DOI

Pratt B, Chang H. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. J. Hazard. Mater. 2012;209–210:48–58. doi: 10.1016/j.jhazmat.2011.12.068. PubMed DOI

Varanka S, Hjort J, Luoto M. Geomorphological factors predict water quality in boreal rivers. Earth Surf. Process. Landforms. 2015;40:1989–1999. doi: 10.1002/esp.3601. DOI

Fučík P, Novák P, Žížala D. A combined statistical approach for evaluation of the effects of land use, agricultural and urban activities on stream water chemistry in small tile-drained catchments of south Bohemia, Czech Republic. Environ. Earth Sci. 2014;72:2195–2216. doi: 10.1007/s12665-014-3131-y. DOI

Wetzel, R. Limnology: Lake and River Ecosystems. (Academic Press, 2001).

Dodds WK. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J. North Am. Benthol. Soc. 2003;22:171–181. doi: 10.2307/1467990. DOI

Neal C, Heathwaite AL. Nutrient mobility within river basins: A European perspective. J. Hydrol. 2005;304:477–490. doi: 10.1016/j.jhydrol.2004.07.045. DOI

Bu H, Meng W, Zhang Y, Wan J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014;41:187–197. doi: 10.1016/j.ecolind.2014.02.003. DOI

Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 2018;33:1247–1257. doi: 10.1007/s10980-018-0673-5. DOI

Gao H, et al. Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models. Landsc. Ecol. 2018;33:1597–1616. doi: 10.1007/s10980-018-0690-4. DOI

Kosmowska A, Żelazny M, Małek S, Siwek JP. & Jelonkiewicz, Ł. Effect of deforestation on stream water chemistry in the Skrzyczne massif (the Beskid Śląski Mountains in southern Poland) Sci. Total Environ. 2016;568:1044–1053. doi: 10.1016/j.scitotenv.2016.06.123. PubMed DOI

Wan R, et al. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. J. Environ. Manage. 2014;133:1–11. doi: 10.1016/j.jenvman.2013.11.035. PubMed DOI

Silva DML, et al. Influence of land use changes on water chemistry in streams in the State of São Paulo, southeast Brazil. An. Acad. Bras. Cienc. 2012;84:919–30. doi: 10.1590/S0001-37652012000400007. PubMed DOI

Wu Y, Liu S. Modeling of land use and reservoir effects on nonpoint source pollution in a. J. Environ. Monit. 2012;14(9):2350–2361. doi: 10.1039/c2em30278k. PubMed DOI

Wu Y, Chen J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013;32:294–304. doi: 10.1016/j.ecolind.2013.04.002. DOI

Sun, P. et al. Can the Grain-for-Green Program Really Ensure a Low Sediment Load on the Chinese Loess Plateau? Engineering, 10.1016/j.eng.2019.07.014 (in press).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...