Deuteration of BTZ043 Extends the Lifetime of Meisenheimer Intermediates to the Antituberculosis Nitroso Oxidation State
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 AI054193
NIAID NIH HHS - United States
R37 AI054193
NIAID NIH HHS - United States
PubMed
31620234
PubMed Central
PMC6792150
DOI
10.1021/acsmedchemlett.9b00308
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Substituted nitrobenzothiazinones (BTZs) are potent antituberculosis prodrugs that are reductively activated to produce nitroso moieties that form covalent adducts with a cysteine residue of decaprenylphosphoryl-β-d-ribose-2'-oxidase (DprE1) of Mycobacterium tuberculosis (Mtb). The resulting cell wall synthesis inhibition is lethal to Mtb, leading to consideration of development of BTZs for clinical use. The hydride-induced reduction of the nitroaromatic proceeds by reversible formation of the corresponding Meisenheimer complex. Herein we demonstrate that chemical reduction of BTZ043 with NaBD4 followed by reoxidation incorporates deuterium into the core nitro aromatic warhead. Subsequent reduction of the deuterated species is not affected, but, as expected, reoxidation is slowed by the deuterium isotope effect, thus prolonging the lifetime of the active nitroso oxidation state.
Zobrazit více v PubMed
Harbeson S. L.; Tung R. D. Deuterium Medicinal Chemistry: An New Approach to Drug Discovery and Development. MedChem. News 2014, 2, 8–22.
Harbeson S. L.; Tung R. D. (ed. , Chapter 24: Deuterium in Drug Discovery and Development in Annu. Rep. Med. Chem.; Macor J. E., Ed.; Elsevier: Oxford, UK, 2011; Vol. 46, pp 403–417.
World Health Organization . Global Tuberculosis Report 2017.
https://www.tballiance.org/why-new-tb-drugs/global-pandemic (accessed June 6, 2019).
Diacon A. H.; Pym A.; Grobusch M.; Patientia R.; Rustomjee R.; Page-Shipp L.; Pistoriius C.; Krause R.; Bogoshi M.; Churchyard G.; Venter A.; Allen J.; Palomino J. C.; De Marez T.; van Heeswijk R. P. G.; Lounis N.; Meyvisch P.; Verbeeck J.; Parys W.; de Beule K.; Andries K.; McNeeley D. F. The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis. N. Engl. J. Med. 2009, 360, 2397–2405. 10.1056/NEJMoa0808427. PubMed DOI
Andries K.; Verhasselt P.; Guillemont J.; Gohlmann H. W. H.; Neefs J. M.; Winkler H.; Van Gestel J.; Timmerman P.; Zhu M.; Lee E.; Williams P.; de Chaffoy D.; Huitric E.; Hoffner S.; Cambau E.; Truffot-Pernot C.; Lounis N.; Jarlier V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. 10.1126/science.1106753. PubMed DOI
Furin J.; Diacon A. H.; Andries K. Combatting drug-resistant tuberculosis: the unexpected benefits of bedaquiline. Int. J. Tuberc. Lung Dis 2017, 21, 4–5. 10.5588/ijtld.16.0768. PubMed DOI
Horsburgh C. R. Jr; Haxaire-Theeuwes M.; Lienhardt C.; Wingfield C.; McNeeley D.; Pyne-Mercier L.; Keshavjee S.; Varaine F. Research Excellence To Stop TB Resistance (RESIST-TB); Critical Path to TB Drug Regimens’ Access and Appropriate Use Workgroup. Compassionate use of and expanded access to new drugs for drug-resistant tuberculosis. Int. J. Tuberc Lung Dis 2013, 17, 146–152. 10.5588/ijtld.12.0017. PubMed DOI
World Health Organization . Policy implementation package for new TB drug introduction, 2014. http://www.who.int/tb/PIPnewTBdrugs.pdf?ua1/41 (accessed June 10, 2019).
Mikusova K.; Ekins S. Learning from the past for TB drug discovery in the future. Drug Discovery Today 2017, 22, 534–545. 10.1016/j.drudis.2016.09.025. PubMed DOI PMC
Makarov V.; Manina G.; Mikusova K.; Möllmann U.; Ryabova O.; Saint-Joanis B.; Dhar N.; Pasca M. R.; Buroni S.; Lucarelli A. P.; Milano A.; De Rossi E.; Belanova M.; Bobovska A.; Dianiskova P.; Kordulakova J.; Sala C.; Fullam E.; Schneider P.; McKinney J. D.; Brodin P.; Christophe T.; Waddell S.; Butcher P.; Albrethsen J.; Rosenkrands I.; Brosch R.; Nandi V.; Bharath S.; Gaonkar S.; Shandil R. K.; Balasubramanian V.; Balganesh T.; Tyagi S.; Grosset J.; Riccardi G.; Cole S. T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 2009, 324, 801–804. 10.1126/science.1171583. PubMed DOI PMC
Makarov V.; Lechartier B.; Zhang M.; Neres J.; van der Sar A. M.; Raadsen S. A.; Hartkoorn R. C.; Ryabova O. B.; Vocat A.; DecosterdL A.; Widmer N.; Buclin T.; Bitter W.; Andries K.; Pojer F.; Dyson P. J.; Cole S. T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med. 2014, 6, 372–383. 10.1002/emmm.201303575. PubMed DOI PMC
https://clinicaltrials.gov/ct2/show/NCT03334734 (accessed May 24, 2019).
Makarov V.; Riabova O. B.; Yuschenko A.; Urlyapova N.; Daudova A.; Zipfel P. F.; Möllmann U. Synthesis and antileprosy activity of some dialkyldithiocarbamates. J. Antimicrob. Chemother. 2006, 57, 1134–1138. 10.1093/jac/dkl095. PubMed DOI
Neres J.; Pojer F.; Molteni E.; Chiarelli L. R.; Dhar N.; Boy-Rottger S.; Buroni S.; Fullam E.; Degiacomi G.; Lucarelli A. P.; Read R. J.; Zanoni G.; Edmondson D. E.; De Rossi E.; Pasca M. R.; McKinney J. D.; Dyson P. J.; Riccardi G.; Mattevi A.; Cole S. T.; Binda C. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci. Transl. Med. 2012, 4, 150ra121.10.1126/scitranslmed.3004395. PubMed DOI PMC
Brecik M.; Centárová I.; Mukherjee R.; Kolly G. S.; Huszár S.; Bobovská A.; Kilacsková E.; Mokošová V.; Svetlíková Z.; Šarkan M.; Neres J.; Korduláková J.; Cole S. T.; Mikušová K. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol. 2015, 10, 1631–1636. 10.1021/acschembio.5b00237. PubMed DOI
Trefzer C.; Rengifo-Gonzalez M.; Hinner M. J.; Schneider P.; Makarov V.; Cole S. T.; Johnsson K. Benzothiazinones: prodrugs that covalently modify the decaprenylphosphoryl-β-Dribose 2′-epimerase DprE1 of Mycobacterium tuberculosis. J. Am. Chem. Soc. 2010, 132, 13663–13665. 10.1021/ja106357w. PubMed DOI
de Jesus Lopes Ribeiro A. L.; Degiacomi G.; Ewann F.; Buroni S.; Incandela M. L.; Chiarelli L. R.; Mori G.; Kim J.; Contreras-Dominguez M.; Park Y.-S.; Han S.-J.; Brodin P.; Valentini G.; Rizzi M.; Riccardi G.; Pasca M. R. Analogous mechanisms of resistance to benzothiazinones and dinitrobenzamides in Mycobacterium smegmatis. PLoS One 2011, 6, e2667510.1371/journal.pone.0026675. PubMed DOI PMC
Tiwari R.; Moraski G. C.; Krchnak V.; Miller P. A.; Colon-Martinez M.; Herrero E.; Oliver A. G.; Miller M. J. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. J. Am. Chem. Soc. 2013, 135, 3539–3549. 10.1021/ja311058q. PubMed DOI PMC
Kloss F.; Krchnak V.; Krchnakova A.; Schieferdecker S.; Dreisbach J.; Krone V.; Möllmann U.; Hoelscher M.; Miller M. J. In Vivo Dearomatization of the Potent Antituberculosis Agent BTZ043 via Meisenheimer Complex Formation. Angew. Chem., Int. Ed. 2017, 56, 2187–2191. 10.1002/anie.201609737. PubMed DOI
Errede L. A.; Davis H. R. The Anomalous behavior of m-trifluroomethylnitrosobenzene dimer. J. Org. Chem. 1963, 28, 1430–1431. 10.1021/jo01040a534. DOI
Suwiński J.; Wagner P.; Holt E. M. Reduction of aromatic nitrocompounds by sodium borohydride in methanol in the presence of sodium methoxide. Tetrahedron 1996, 52, 9541–9552. 10.1016/0040-4020(96)00491-7. DOI
Carey F. A.; Sundberg R. J.. Advanced Organic Chemistry Part A: Structure and Mechanisms, 5th ed.; Springer: New York, 2007; Chapter 3.5.