Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM124152
NIGMS NIH HHS - United States
PubMed
31633023
PubMed Central
PMC6785256
DOI
10.1126/sciadv.aax2518
PII: aax2518
Knihovny.cz E-zdroje
- MeSH
- antagonisté leukotrienů chemie metabolismus MeSH
- antiastmatika chemie metabolismus MeSH
- chromony chemie metabolismus MeSH
- fenylkarbamáty MeSH
- indoly MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- ligandy MeSH
- receptory leukotrienů chemie genetika metabolismus MeSH
- rekombinantní proteiny biosyntéza chemie izolace a purifikace MeSH
- simulace molekulového dockingu MeSH
- sodík chemie metabolismus MeSH
- sulfonamidy MeSH
- terciární struktura proteinů MeSH
- tosylové sloučeniny chemie metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antagonisté leukotrienů MeSH
- antiastmatika MeSH
- chromony MeSH
- fenylkarbamáty MeSH
- indoly MeSH
- leukotriene D4 receptor MeSH Prohlížeč
- ligandy MeSH
- pranlukast MeSH Prohlížeč
- receptory leukotrienů MeSH
- rekombinantní proteiny MeSH
- sodík MeSH
- sulfonamidy MeSH
- tosylové sloučeniny MeSH
- zafirlukast MeSH Prohlížeč
The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.
Department of Physics Arizona State University Tempe AZ 85287 USA
ELI Beamlines Institute of Physics Czech Academy of Sciences 18221 Prague Czech Republic
Institut de Biologie Structurale J P Ebel Université Grenoble Alpes CEA CNRS Grenoble 38000 France
Institute of Complex Systems ICS 6 Structural Biochemistry Research Centre Juelich Juelich Germany
Institute of Crystallography RWTH Aachen University Aachen Germany
Juelich Center for Structural Biology Research Center Juelich Juelich Germany
Linac Coherent Light Source SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
School of Molecular Sciences Arizona State University Tempe AZ 85287 USA
Zobrazit více v PubMed
Bäck M., Dahlén S.-E., Drazen J. M., Evans J. F., Serhan C. N., Shimizu T., Yokomizo T., Rovati G. E., International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene receptor nomenclature, distribution, and pathophysiological functions. Pharmacol. Rev. 63, 539–584 (2011). PubMed
Lynch K. R., O'Neill G. P., Liu Q., Im D.-S., Sawyer N., Metters K. M., Coulombe N., Abramovitz M., Figueroa D. J., Zeng Z., Connolly B. M., Bai C., Austin C. P., Chateauneuf A., Stocco R., Greig G. M., Kargman S., Hooks S. B., Hosfield E., Williams D. L., Ford-Hutchinson A. W., Caskey C. T., Evans J. F., Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789–793 (1999). PubMed
Bäck M., Powell W. S., Dahlén S. E., Drazen J. M., Evans J. F., Serhan C. N., Shimizu T., Yokomizo T., Rovati G. E., Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br. J. Pharmacol. 171, 3551–3574 (2014). PubMed PMC
Burke L., Butler C. T., Murphy A., Moran B., Gallagher W. M., O’Sullivan J., Kennedy B. N., Evaluation of cysteinyl leukotriene signaling as a therapeutic target for colorectal cancer. Front. Cell Dev. Biol. 4, 103 (2016). PubMed PMC
Ingelsson E., Yin L., Bäck M., Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J. Allergy Clin. Immunol. 129, 702–707.e2 (2012). PubMed
Laidlaw T. M., Boyce J. A., Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin. Exp. Allergy 42, 1313–1320 (2012). PubMed PMC
Matsuyama M., Yoshimura R., Cysteinyl-leukotriene1 receptor is a potent target for the prevention and treatment of human urological cancer. Mol. Med. Rep. 3, 245–251 (2010). PubMed
Capra V., Thompson M. D., Sala A., Cole D. E., Folco G., Rovati G. E., Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: Critical update and emerging trends. Med. Res. Rev. 27, 469–527 (2007). PubMed
Capra V., Ambrosio M., Riccioni G., Rovati G. E., Cysteinyl-leukotriene receptor antagonists: Present situation and future opportunities. Curr. Med. Chem. 13, 3213–3226 (2006). PubMed
Asano K., Shiomi T., Hasegawa N., Nakamura H., Kudo H., Matsuzaki T., Hakuno H., Fukunaga K., Suzuki Y., Kanazawa M., Yamaguchi K., Leukotriene C4 synthase gene A(−444)C polymorphism and clinical response to a CYS-LT1 antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 12, 565–570 (2002). PubMed
Law S. W. Y., Wong A. Y. S., Anand S., Wong I. C. K., Chan E. W., Neuropsychiatric events associated with leukotriene-modifying agents: A systematic review. Drug Safety 41, 253–265 (2018). PubMed
Shimbo J., Onodera O., Tanaka K., Tsuji S., Churg-Strauss syndrome and the leukotriene receptor antagonist pranlukast. Clin. Rheumatol. 24, 661–662 (2005). PubMed
Chun E., Thompson A. A., Liu W., Roth C. B., Griffith M. T., Katritch V., Kunken J., Xu F., Cherezov V., Hanson M. A., Stevens R. C., Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012). PubMed PMC
Caffrey M., Cherezov V., Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4, 706–731 (2009). PubMed PMC
Stauch B., Cherezov V., Serial femtosecond crystallography of G protein–coupled receptors. Annu. Rev. Biophys. 47, 377–397 (2018). PubMed PMC
Ballesteros J. A., Weinstein H., Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).
Thompson M. D., Capra V., Takasaki J., Maresca G., Rovati G. E., Slutsky A. S., Lilly C., Zamel N., McIntyre Burnham W., Cole D. E., Siminovitch K. A., A functional G300S variant of the cysteinyl leukotriene 1 receptor is associated with atopy in a Tristan da Cunha isolate. Pharmacogenet. Genomics 17, 539–549 (2007). PubMed
Yaddaden L., Véronneau S., Thompson M. D., Rola-Pleszczynski M., Stankova J., Cellular signalling of cysteinyl leukotriene type 1 receptor variants CysLT1-G300S and CysLT1-I206S. Prostaglandins Leukot. Essent. Fatty Acids. 105, 1–8 (2016). PubMed
Katritch V., Cherezov V., Stevens R. C., Structure-function of the G protein–coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013). PubMed PMC
Schönegge A.-M., Gallion J., Picard L.-P., Wilkins A. D., Le Gouill C., Audet M., Stallaert W., Lohse M. J., Kimmel M., Lichtarge O., Bouvier M., Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nat. Commun. 8, 2169 (2017). PubMed PMC
Katritch V., Fenalti G., Abola E. E., Roth B. L., Cherezov V., Stevens R. C., Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39, 233–244 (2014). PubMed PMC
Massink A., Gutiérrez-de-Terán H., Lenselink E. B., Ortiz Zacarías N. V., Xia L., Heitman L. H., Katritch V., Stevens R. C., IJzerman A. P., Sodium ion binding pocket mutations and adenosine A2A receptor function. Mol. Pharmacol. 87, 305–313 (2015). PubMed PMC
Zarzycka B., Zaidi S. A., Roth B. L., Katritch V., Harnessing ion-binding sites for gpcr pharmacology. Pharmacol. Rev. 71, 571–595 (2019). PubMed PMC
Fredriksson R., Lagerström M. C., Lundin L.-G., Schiöth H. B., The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003). PubMed
Zhang D., Gao Z.-G., Zhang K., Kiselev E., Crane S., Wang J., Paoletta S., Yi C., Ma L., Zhang W., Han G. W., Liu H., Cherezov V., Katritch V., Jiang H., Stevens R. C., Jacobson K. A., Zhao Q., Wu B., Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520, 317–321 (2015). PubMed PMC
Hori T., Okuno T., Hirata K., Yamashita K., Kawano Y., Yamamoto M., Hato M., Nakamura M., Shimizu T., Yokomizo T., Miyano M., Yokoyama S., Na+−mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat. Chem. Biol. 14, 262–269 (2018). PubMed
Pert C. B., Pasternak G., Snyder S. H., Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182, 1359–1361 (1973). PubMed
Liu W., Chun E., Thompson A. A., Chubukov P., Xu F., Katritch V., Han G. W., Roth C. B., Heitman L. H., IJzerman A. P., Cherezov V., Stevens R. C., Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012). PubMed PMC
Zhang C., Srinivasan Y., Arlow D. H., Fung J. J., Palmer D., Zheng Y., Green H. F., Pandey A., Dror R. O., Shaw D. E., Weis W. I., Coughlin S. R., Kobilka B. K., High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012). PubMed PMC
Cheng R. K. Y., Fiez-Vandal C., Schlenker O., Edman K., Aggeler B., Brown D. G., Brown G. A., Cooke R. M., Dumelin C. E., Doré A. S., Geschwindner S., Grebner C., Hermansson N.-O., Jazayeri A., Johansson P., Leong L., Prihandoko R., Rappas M., Soutter H., Snijder A., Sundström L., Tehan B., Thornton P., Troast D., Wiggin G., Zhukov A., Marshall F. H., Dekker N., Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017). PubMed
Zhang J., Zhang K., Gao Z.-G., Paoletta S., Zhang D., Han G. W., Li T., Ma L., Zhang W., Müller C. E., Yang H., Jiang H., Cherezov V., Katritch V., Jacobson K. A., Stevens R. C., Wu B., Zhao Q., Agonist-bound structure of the human P2Y12 receptor. Nature 509, 119–122 (2014). PubMed PMC
Srivastava A., Yano J., Hirozane Y., Kefala G., Gruswitz F., Snell G., Lane W., Ivetac A., Aertgeerts K., Nguyen J., Jennings A., Okada K., High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513, 124–127 (2014). PubMed
Hanson M. A., Roth C. B., Jo E., Griffith M. T., Scott F. L., Reinhart G., Desale H., Clemons B., Cahalan S. M., Schuerer S. C., Sanna M. G., Han G. W., Kuhn P., Rosen H., Stevens R. C., Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). PubMed PMC
Cao C., Tan Q., Xu C., He L., Yang L., Zhou Y., Zhou Y., Qiao A., Lu M., Yi C., Han G. W., Wang X., Li X., Yang H., Rao Z., Jiang H., Zhao Y., Liu J., Stevens R. C., Zhao Q., Zhang X. C., Wu B., Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol. 25, 488–495 (2018). PubMed
Taniguchi R., Inoue A., Sayama M., Uwamizu A., Yamashita K., Hirata K., Yoshida M., Tanaka Y., Kato H. E., Nakada-Nakura Y., Otani Y., Nishizawa T., Doi T., Ohwada T., Ishitani R., Aoki J., Nureki O., Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. Nature 548, 356–360 (2017). PubMed
Centers for Disease Control and Prevention, 2017 National Health Interview Survey (NHIS) Data (2018); www.cdc.gov/asthma/most_recent_national_asthma_data.htm.
Alexandrov A. I., Mileni M., Chien E. Y. T., Hanson M. A., Stevens R. C., Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008). PubMed
Liu W., Wacker D., Gati C., Han G. W., James D., Wang D., Nelson G., Weierstall U., Katritch V., Barty A., Zatsepin N. A., Li D., Messerschmidt M., Boutet S., Williams G. J., Koglin J. E., Seibert M. M., Wang C., Shah S. T. A., Basu S., Fromme R., Kupitz C., Rendek K. N., Grotjohann I., Fromme P., Kirian R. A., Beyerlein K. R., White T. A., Chapman H. N., Caffrey M., Spence J. C. H., Stevens R. C., Cherezov V., Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013). PubMed PMC
Bourenkov G. P., Popov A. N., A quantitative approach to data-collection strategies. Acta Crystallogr. D Biol. Crystallogr. 62, 58–64 (2006). PubMed
Kabsch W., XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC
Giordano R., Leal R. M. F., Bourenkov G. P., McSweeney S., Popov A. N., The application of hierarchical cluster analysis to the selection of isomorphous crystals. Acta Crystallogr. D Biol. Crystallogr. 68, 649–658 (2012). PubMed
Weierstall U., James D., Wang C., White T. A., Wang D., Liu W., Spence J. C. H., Bruce Doak R., Nelson G., Fromme P., Fromme R., Grotjohann I., Kupitz C., Zatsepin N. A., Liu H., Basu S., Wacker D., Won Han G., Katritch V., Boutet S., Messerschmidt M., Williams G. J., Koglin J. E., Marvin Seibert M., Klinker M., Gati C., Shoeman R. L., Barty A., Chapman H. N., Kirian R. A., Beyerlein K. R., Stevens R. C., Li D., Shah S. T. A., Howe N., Caffrey M., Cherezov V., Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014). PubMed PMC
Barty A., Kirian R. A., Maia F. R. N. C., Hantke M., Yoon C. H., White T. A., Chapman H., Cheetah: Software for high-throughput reduction and analysis of serial femtosecond x-ray diffraction data. J. Appl. Cryst. 47, 1118–1131 (2014). PubMed PMC
White T. A., Kirian R. A., Martin A. V., Aquila A., Nass K., Barty A., Chapman H. N., CrystFEL: A software suite for snapshot serial crystallography. J. Appl. Cryst. 45, 335–341 (2012).
Yefanov O., Mariani V., Gati C., White T. A., Chapman H. N., Barty A., Accurate determination of segmented x-ray detector geometry. Opt. Express 23, 28459–28470 (2015). PubMed PMC
McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J., Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007). PubMed PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed PMC
G. Bricogne, BUSTER Version 2.10.3 (Global Phasing Ltd., 2011).
Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC
Abagyan R., Totrov M., Kuznetsov D., ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506 (1994).
Zhang H., Han G. W., Batyuk A., Ishchenko A., White K. L., Patel N., Sadybekov A., Zamlynny B., Rudd M. T., Hollenstein K., Tolstikova A., White T. A., Hunter M. S., Weierstall U., Liu W., Babaoglu K., Moore E. L., Katz R. D., Shipman J. M., Garcia-Calvo M., Sharma S., Sheth P., Soisson S. M., Stevens R. C., Katritch V., Cherezov V., Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544, 327–332 (2017). PubMed PMC
Jo S., Kim T., Iyer V. G., Im W., CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). PubMed
Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., Lomize A. L., OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012). PubMed PMC
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Chen V. B., Arendall W. B. III, Headd J. J., Keedy D. A., Immormino R. M., Kapral G. J., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC