Small-wedge synchrotron and serial XFEL datasets for Cysteinyl leukotriene GPCRs
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
Grantová podpora
18-02-40020
Russian Foundation for Basic Research (RFBR) - International
18-02-40020
Russian Foundation for Basic Research (RFBR) - International
19-74-00088
Russian Science Foundation (RSF) - International
PubMed
33184270
PubMed Central
PMC7661540
DOI
10.1038/s41597-020-00729-2
PII: 10.1038/s41597-020-00729-2
Knihovny.cz E-zdroje
- MeSH
- cystein chemie MeSH
- difrakce rentgenového záření * MeSH
- krystalizace MeSH
- leukotrieny chemie MeSH
- lidé MeSH
- receptory spřažené s G-proteiny chemie MeSH
- synchrotrony * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- cysteinyl-leukotriene MeSH Prohlížeč
- leukotrieny MeSH
- receptory spřažené s G-proteiny MeSH
Structural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.
Department of Chemistry University of Southern California Los Angeles CA 90089 USA
ESRF The European Synchrotron 38000 Grenoble France
Institut de Biologie Structurale Université Grenoble Alpes CEA CNRS Grenoble France
Institute of Biological Information Processing Forschungszentrum Jülich GmbH 52425 Jülich Germany
Institute of Crystallography University of Aachen Aachen Germany
Joint Institute for Nuclear Research Dubna 141980 Russia
JuStruct Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Germany
Zobrazit více v PubMed
Bäck M, et al. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol. Rev. 2011;63:539–584. doi: 10.1124/pr.110.004184. PubMed DOI
Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma. 2013;50:922–931. doi: 10.3109/02770903.2013.823447. PubMed DOI
Shi Q-J, et al. Intracerebroventricular injection of HAMI 3379, a selective cysteinyl leukotriene receptor 2 antagonist, protects against acute brain injury after focal cerebral ischemia in rats. Brain Res. 2012;1484:57–67. doi: 10.1016/j.brainres.2012.09.020. PubMed DOI
Colazzo F, Gelosa P, Tremoli E, Sironi L, Castiglioni L. Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm. 2017;2017:1–13. doi: 10.1155/2017/2432958. PubMed DOI PMC
Magnusson C, et al. Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. Eur. J. Cancer. 2010;46:826–835. doi: 10.1016/j.ejca.2009.12.022. PubMed DOI
Magnusson C, et al. Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. Int. J. Cancer. 2011;129:9–22. doi: 10.1002/ijc.25648. PubMed DOI
Tsai M-J, et al. Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients. Sci. Rep. 2016;6:23979. doi: 10.1038/srep23979. PubMed DOI PMC
Duah E, et al. Cysteinyl leukotriene 2 receptor promotes endothelial permeability, tumor angiogenesis, and metastasis. Proc. Natl. Acad. Sci. 2019;116:199–204. doi: 10.1073/pnas.1817325115. PubMed DOI PMC
Moore AR, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016;48:675–680. doi: 10.1038/ng.3549. PubMed DOI PMC
Ceraudo, E. et al. Uveal Melanoma Oncogene CYSLTR2 Encodes a Constitutively Active GPCR Highly Biased Toward Gq Signaling. bioRxiv 1–60, 10.1101/663153 (2019).
Yokomizo T, Nakamura M, Shimizu T, Sasaki F, Yokomizo T. Leukotriene receptors as potential therapeutic targets. J. Clin. Invest. 2018;128:2691–2701. doi: 10.1172/JCI97946. PubMed DOI PMC
Yamamoto M, et al. Protein microcrystallography using synchrotron radiation. IUCrJ. 2017;4:529–539. doi: 10.1107/S2052252517008193. PubMed DOI PMC
Mishin A, et al. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin. Drug Discov. 2019;14:933–945. doi: 10.1080/17460441.2019.1626822. PubMed DOI PMC
Zander U, et al. Merging of synchrotron serial crystallographic data by a genetic algorithm. Acta Crystallogr. Sect. D Struct. Biol. 2016;72:1026–1035. doi: 10.1107/S2059798316012079. PubMed DOI PMC
Santoni G, Zander U, Mueller-Dieckmann C, Leonard G, Popov A. Hierarchical clustering for multiple-crystal macromolecular crystallography experiments: the ccCluster program. J. Appl. Cryst. 2017;50:1844–1851. doi: 10.1107/S1600576717015229. PubMed DOI PMC
Foadi J, et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:1617–1632. doi: 10.1107/S0907444913012274. PubMed DOI PMC
Assmann G, Brehm W, Diederichs K. Identification of rogue datasets in serial crystallography. J. Appl. Crystallogr. 2016;49:1021–1028. doi: 10.1107/S1600576716005471. PubMed DOI PMC
Hanson MA, et al. Crystal Structure of a Lipid G Protein-Coupled Receptor. Science (80-.). 2012;335:851–855. doi: 10.1126/science.1215904. PubMed DOI PMC
Diederichs K. Dissecting random and systematic differences between noisy composite data sets. Acta Crystallogr. Sect. D Struct. Biol. 2017;73:286–293. doi: 10.1107/S2059798317000699. PubMed DOI PMC
Brehm W, Diederichs K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014;70:101–109. doi: 10.1107/S1399004713025431. PubMed DOI
Asada H, et al. Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat. Struct. Mol. Biol. 2018;25:570–576. doi: 10.1038/s41594-018-0079-8. PubMed DOI
White TA, et al. Serial femtosecond crystallography datasets from G-protein-coupled receptors. Sci. Data. 2016;3:160057. doi: 10.1038/sdata.2016.57. PubMed DOI PMC
Toyoda Y, et al. Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat. Chem. Biol. 2019;15:18–26. doi: 10.1038/s41589-018-0131-3. PubMed DOI
Kato HE, et al. Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature. 2018;561:349–354. doi: 10.1038/s41586-018-0504-5. PubMed DOI PMC
Kim YS, et al. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature. 2018;561:343–348. doi: 10.1038/s41586-018-0511-6. PubMed DOI PMC
Morin A, et al. Collaboration gets the most out of software. Elife. 2013;2:1–6. doi: 10.7554/eLife.01456. PubMed DOI PMC
Maia FRNC. The coherent X-ray imaging data bank. Nature Methods. 2012;9:854–855. doi: 10.1038/nmeth.2110. PubMed DOI
Luginina A, et al. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 2019;5:eaax2518. doi: 10.1126/sciadv.aax2518. PubMed DOI PMC
Gusach A, et al. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 2019;10:5573. doi: 10.1038/s41467-019-13348-2. PubMed DOI PMC
Basu S, et al. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. J. Synchrotron Radiat. 2019;26:244–252. doi: 10.1107/S1600577518016570. PubMed DOI PMC
Chun E, et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure. 2012;20:967–976. doi: 10.1016/j.str.2012.04.010. PubMed DOI PMC
Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428. doi: 10.1016/S1043-9471(05)80049-7. DOI
Caffrey M, Cherezov V, Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 2009;4:706–731. doi: 10.1038/nprot.2009.31. PubMed DOI PMC
Liu W, Ishchenko A, Cherezov V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc. 2014;9:2123–2134. doi: 10.1038/nprot.2014.141. PubMed DOI PMC
Ishchenko A, Cherezov V, Liu W. Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. J. Vis. Exp. 2016;2016:e54463. PubMed PMC
Liu, W. & Cherezov, V. Crystallization of Membrane Proteins in Lipidic Mesophases. J. Vis. Exp. e2501, 10.3791/2501 (2011). PubMed PMC
Svensson O, Malbet-Monaco S, Popov A, Nurizzo D, Bowler MW. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015;71:1757–1767. doi: 10.1107/S1399004715011918. PubMed DOI PMC
Popov AN, Bourenkov GP. Choice of data-collection parameters based on statistic modelling. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003;59:1145–1153. doi: 10.1107/S0907444903008163. PubMed DOI
Cherezov V, et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 $μ$m size X-ray synchrotron beam. J. R. Soc. Interface. 2009;6:587–597. doi: 10.1098/rsif.2009.0142.focus. PubMed DOI PMC
Weierstall U, et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 2014;5:3309. doi: 10.1038/ncomms4309. PubMed DOI PMC
Hart, P. et al. The CSPAD megapixel x-ray camera at LCLS. In X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications., 10.1117/12.930924 (2012).
Barty A, et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 2014;47:1118–1131. doi: 10.1107/S1600576714007626. PubMed DOI PMC
Herrmann S, et al. CSPAD-140k: A versatile detector for LCLS experiments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2013;718:550–553. doi: 10.1016/j.nima.2013.01.057. DOI
Marin E, 2020. CysLT1R receptor complex with Zafirlukast (P21 space group) structure (SFX@LCLS) Coherent X-ray Imaging Data Bank. DOI
Marin E, 2019. CysLT1R_6RZ4. Zenodo. DOI
Marin E, 2019. CysLT2R_6RZ6. Zenodo. DOI
Marin E, 2019. CysLT2R_6RZ7. Zenodo. DOI
Marin E, 2019. S. CysLT2R_6RZ8. Zenodo. DOI
Marin E, 2019. CysLT2R_6RZ9. Zenodo. DOI
Pándy-Szekeres G, et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 2018;46:D440–D446. doi: 10.1093/nar/gkx1109. PubMed DOI PMC
Marin E, 2020. CysLT1R receptor complex with Zafirlukast (P1 space group) structure (SFX@LCLS) Coherent X-ray Imaging Data Bank. DOI