Small-wedge synchrotron and serial XFEL datasets for Cysteinyl leukotriene GPCRs

. 2020 Nov 12 ; 7 (1) : 388. [epub] 20201112

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33184270

Grantová podpora
18-02-40020 Russian Foundation for Basic Research (RFBR) - International
18-02-40020 Russian Foundation for Basic Research (RFBR) - International
19-74-00088 Russian Science Foundation (RSF) - International

Odkazy

PubMed 33184270
PubMed Central PMC7661540
DOI 10.1038/s41597-020-00729-2
PII: 10.1038/s41597-020-00729-2
Knihovny.cz E-zdroje

Structural studies of challenging targets such as G protein-coupled receptors (GPCRs) have accelerated during the last several years due to the development of new approaches, including small-wedge and serial crystallography. Here, we describe the deposition of seven datasets consisting of X-ray diffraction images acquired from lipidic cubic phase (LCP) grown microcrystals of two human GPCRs, Cysteinyl leukotriene receptors 1 and 2 (CysLT1R and CysLT2R), in complex with various antagonists. Five datasets were collected using small-wedge synchrotron crystallography (SWSX) at the European Synchrotron Radiation Facility with multiple crystals under cryo-conditions. Two datasets were collected using X-ray free electron laser (XFEL) serial femtosecond crystallography (SFX) at the Linac Coherent Light Source, with microcrystals delivered at room temperature into the beam within LCP matrix by a viscous media microextrusion injector. All seven datasets have been deposited in the open-access databases Zenodo and CXIDB. Here, we describe sample preparation and annotate crystallization conditions for each partial and full datasets. We also document full processing pipelines and provide wrapper scripts for SWSX and SFX data processing.

Erratum v

PubMed

Zobrazit více v PubMed

Bäck M, et al. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol. Rev. 2011;63:539–584. doi: 10.1124/pr.110.004184. PubMed DOI

Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma. 2013;50:922–931. doi: 10.3109/02770903.2013.823447. PubMed DOI

Shi Q-J, et al. Intracerebroventricular injection of HAMI 3379, a selective cysteinyl leukotriene receptor 2 antagonist, protects against acute brain injury after focal cerebral ischemia in rats. Brain Res. 2012;1484:57–67. doi: 10.1016/j.brainres.2012.09.020. PubMed DOI

Colazzo F, Gelosa P, Tremoli E, Sironi L, Castiglioni L. Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm. 2017;2017:1–13. doi: 10.1155/2017/2432958. PubMed DOI PMC

Magnusson C, et al. Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. Eur. J. Cancer. 2010;46:826–835. doi: 10.1016/j.ejca.2009.12.022. PubMed DOI

Magnusson C, et al. Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. Int. J. Cancer. 2011;129:9–22. doi: 10.1002/ijc.25648. PubMed DOI

Tsai M-J, et al. Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients. Sci. Rep. 2016;6:23979. doi: 10.1038/srep23979. PubMed DOI PMC

Duah E, et al. Cysteinyl leukotriene 2 receptor promotes endothelial permeability, tumor angiogenesis, and metastasis. Proc. Natl. Acad. Sci. 2019;116:199–204. doi: 10.1073/pnas.1817325115. PubMed DOI PMC

Moore AR, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016;48:675–680. doi: 10.1038/ng.3549. PubMed DOI PMC

Ceraudo, E. et al. Uveal Melanoma Oncogene CYSLTR2 Encodes a Constitutively Active GPCR Highly Biased Toward Gq Signaling. bioRxiv 1–60, 10.1101/663153 (2019).

Yokomizo T, Nakamura M, Shimizu T, Sasaki F, Yokomizo T. Leukotriene receptors as potential therapeutic targets. J. Clin. Invest. 2018;128:2691–2701. doi: 10.1172/JCI97946. PubMed DOI PMC

Yamamoto M, et al. Protein microcrystallography using synchrotron radiation. IUCrJ. 2017;4:529–539. doi: 10.1107/S2052252517008193. PubMed DOI PMC

Mishin A, et al. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin. Drug Discov. 2019;14:933–945. doi: 10.1080/17460441.2019.1626822. PubMed DOI PMC

Zander U, et al. Merging of synchrotron serial crystallographic data by a genetic algorithm. Acta Crystallogr. Sect. D Struct. Biol. 2016;72:1026–1035. doi: 10.1107/S2059798316012079. PubMed DOI PMC

Santoni G, Zander U, Mueller-Dieckmann C, Leonard G, Popov A. Hierarchical clustering for multiple-crystal macromolecular crystallography experiments: the ccCluster program. J. Appl. Cryst. 2017;50:1844–1851. doi: 10.1107/S1600576717015229. PubMed DOI PMC

Foadi J, et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013;69:1617–1632. doi: 10.1107/S0907444913012274. PubMed DOI PMC

Assmann G, Brehm W, Diederichs K. Identification of rogue datasets in serial crystallography. J. Appl. Crystallogr. 2016;49:1021–1028. doi: 10.1107/S1600576716005471. PubMed DOI PMC

Hanson MA, et al. Crystal Structure of a Lipid G Protein-Coupled Receptor. Science (80-.). 2012;335:851–855. doi: 10.1126/science.1215904. PubMed DOI PMC

Diederichs K. Dissecting random and systematic differences between noisy composite data sets. Acta Crystallogr. Sect. D Struct. Biol. 2017;73:286–293. doi: 10.1107/S2059798317000699. PubMed DOI PMC

Brehm W, Diederichs K. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014;70:101–109. doi: 10.1107/S1399004713025431. PubMed DOI

Asada H, et al. Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat. Struct. Mol. Biol. 2018;25:570–576. doi: 10.1038/s41594-018-0079-8. PubMed DOI

White TA, et al. Serial femtosecond crystallography datasets from G-protein-coupled receptors. Sci. Data. 2016;3:160057. doi: 10.1038/sdata.2016.57. PubMed DOI PMC

Toyoda Y, et al. Ligand binding to human prostaglandin E receptor EP4 at the lipid-bilayer interface. Nat. Chem. Biol. 2019;15:18–26. doi: 10.1038/s41589-018-0131-3. PubMed DOI

Kato HE, et al. Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature. 2018;561:349–354. doi: 10.1038/s41586-018-0504-5. PubMed DOI PMC

Kim YS, et al. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature. 2018;561:343–348. doi: 10.1038/s41586-018-0511-6. PubMed DOI PMC

Morin A, et al. Collaboration gets the most out of software. Elife. 2013;2:1–6. doi: 10.7554/eLife.01456. PubMed DOI PMC

Maia FRNC. The coherent X-ray imaging data bank. Nature Methods. 2012;9:854–855. doi: 10.1038/nmeth.2110. PubMed DOI

Luginina A, et al. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 2019;5:eaax2518. doi: 10.1126/sciadv.aax2518. PubMed DOI PMC

Gusach A, et al. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 2019;10:5573. doi: 10.1038/s41467-019-13348-2. PubMed DOI PMC

Basu S, et al. Automated data collection and real-time data analysis suite for serial synchrotron crystallography. J. Synchrotron Radiat. 2019;26:244–252. doi: 10.1107/S1600577518016570. PubMed DOI PMC

Chun E, et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure. 2012;20:967–976. doi: 10.1016/j.str.2012.04.010. PubMed DOI PMC

Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428. doi: 10.1016/S1043-9471(05)80049-7. DOI

Caffrey M, Cherezov V, Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 2009;4:706–731. doi: 10.1038/nprot.2009.31. PubMed DOI PMC

Liu W, Ishchenko A, Cherezov V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc. 2014;9:2123–2134. doi: 10.1038/nprot.2014.141. PubMed DOI PMC

Ishchenko A, Cherezov V, Liu W. Preparation and delivery of protein microcrystals in lipidic cubic phase for serial femtosecond crystallography. J. Vis. Exp. 2016;2016:e54463. PubMed PMC

Liu, W. & Cherezov, V. Crystallization of Membrane Proteins in Lipidic Mesophases. J. Vis. Exp. e2501, 10.3791/2501 (2011). PubMed PMC

Svensson O, Malbet-Monaco S, Popov A, Nurizzo D, Bowler MW. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015;71:1757–1767. doi: 10.1107/S1399004715011918. PubMed DOI PMC

Popov AN, Bourenkov GP. Choice of data-collection parameters based on statistic modelling. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003;59:1145–1153. doi: 10.1107/S0907444903008163. PubMed DOI

Cherezov V, et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 $μ$m size X-ray synchrotron beam. J. R. Soc. Interface. 2009;6:587–597. doi: 10.1098/rsif.2009.0142.focus. PubMed DOI PMC

Weierstall U, et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 2014;5:3309. doi: 10.1038/ncomms4309. PubMed DOI PMC

Hart, P. et al. The CSPAD megapixel x-ray camera at LCLS. In X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications., 10.1117/12.930924 (2012).

Barty A, et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 2014;47:1118–1131. doi: 10.1107/S1600576714007626. PubMed DOI PMC

Herrmann S, et al. CSPAD-140k: A versatile detector for LCLS experiments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2013;718:550–553. doi: 10.1016/j.nima.2013.01.057. DOI

Marin E, 2020. CysLT1R receptor complex with Zafirlukast (P21 space group) structure (SFX@LCLS) Coherent X-ray Imaging Data Bank. DOI

Marin E, 2019. CysLT1R_6RZ4. Zenodo. DOI

Marin E, 2019. CysLT2R_6RZ6. Zenodo. DOI

Marin E, 2019. CysLT2R_6RZ7. Zenodo. DOI

Marin E, 2019. S. CysLT2R_6RZ8. Zenodo. DOI

Marin E, 2019. CysLT2R_6RZ9. Zenodo. DOI

Pándy-Szekeres G, et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 2018;46:D440–D446. doi: 10.1093/nar/gkx1109. PubMed DOI PMC

Marin E, 2020. CysLT1R receptor complex with Zafirlukast (P1 space group) structure (SFX@LCLS) Coherent X-ray Imaging Data Bank. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...