Insertion of Carbenes into Deprotonated nido-Undecaborane, B11H13(2-)

. 2019 Oct 21 ; 24 (20) : . [epub] 20191021

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31640159

Grantová podpora
CESNET LM2015042 Czech National Grid Infrastructure

We have examined the insertion of carbenes carrying leaving groups into the [nido-B11H13]2- dianion to form the [closo-1-CB11H12]- anion. The best procedure uses CF3SiMe3 and LiCl as the source of CF2. It is simple, convenient and scalable and proceeds with 70-90% yield. Density functional calculations have been used to develop a mechanistic proposal that accounts for the different behavior of CF2, requiring only one equivalent of base for successful conversion of Na[nido-B11H14]- to [closo-1-CB11H12]-, and CCl2 and CBr2, which require more.

Zobrazit více v PubMed

Douvris C., Michl J. Update 1 of: Chemistry of the carba-closo-dodecaborate(-) anion, CB11H12−. Chem. Rev. 2013;113:PR179–PR233. doi: 10.1021/cr400059k. PubMed DOI

Grimes R.N. Carboranes. 3rd ed. Academic Press; London, UK: 2016.

Reed C.A. H+, CH3+, and R3Si+ Carborane reagents: When triflates fail. Acc. Chem. Res. 2010;43:121–128. doi: 10.1021/ar900159e. PubMed DOI PMC

Küppers T., Bernhardt E., Willner H. [Me3Si][R-CB11F11]− synthesis and properties. Angew. Chem. Int. Ed. 2007;46:6346–6349. doi: 10.1002/anie.200701136. PubMed DOI

Wahab A., Stepp B., Douvris C., Valášek M., Štursa J., Klíma J., Piqueras M.-C., Crespo R., Ludvík J., Michl J. Measured and calculated oxidation potentials of 1-X-12-Y-CB11Me10– anions. Inorg. Chem. 2012;51:5128–5137. doi: 10.1021/ic2026939. PubMed DOI

Hawthorne M.F., Maderna A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 1999;99:3421–3434. doi: 10.1021/cr980442h. PubMed DOI

Kaszynski P. Four Decades of Organic Chemistry of closo-Boranes: A Synthetic Toolbox for Constructing Liquid Crystal Materials. A Review. Collect. Czechoslov. Chem. Commun. 1999;64:895–926. doi: 10.1135/cccc19990895. DOI

Ringstrand B., Jankowiak A., Johnson L.E., Pociecha D., Kaszynski P., Górecka E. Anion-driven mesogenicity: A comparative study of ionic liquid crystals based on the [closo-1-CB9H10]− and [closo-1-CB11H12]− clusters. J. Mater. Chem. 2012;22:4874–4880. doi: 10.1039/c2jm15448j. DOI

Pecyna J., Ringstrand B., Domagala S., Kaszynski P., Wozniak K. Synthesis of 12-pyridinium derivatives of the [closo-1-CB11H12]− anion. Inorg. Chem. 2014;53:12617–12626. doi: 10.1021/ic502265g. PubMed DOI

Larsen A.S., Holbrey J.D., Tham F.S., Reed C.A. Designing ionic liquids: Imidazolium melts with inert carborane anions. J. Am. Chem. Soc. 2000;122:7264–7272. doi: 10.1021/ja0007511. DOI

Dymon J., Wibby R., Kleingardner J., Tanski J.M., Guzei I.A., Holbrey J.D., Larsen A.S. Designing ionic liquids with boron cluster anions: Alkylpyridinium and imidazolium [nido-C2B9H11] and [closo-CB11H12] carborane salts. Dalton Trans. 2008:2999. doi: 10.1039/b802374c. PubMed DOI

Knoth W.H. 1-B9H9CH− and B11H11CH−. J. Am. Chem. Soc. 1967;89:1274–1275. doi: 10.1021/ja00981a048. DOI

Knoth W.H. B10H12CNH3, B9H9CH−, B11H11CH−, and metallomonocarboranes. Inorg. Chem. 1971;10:598–605. doi: 10.1021/ic50097a031. DOI

Plešek J., Jelínek T., Drdáková E., Heřmánek S., Stibr B. A convenient preparation of 1-CB11H12− and its C-amino derivatives. Collect. Czechoslov. Chem. Commun. 1984;49:1559–1562. doi: 10.1135/cccc19841559. DOI

Goeta A.E., Hughes A.K., Batsanov A.S., Fox M.A., Howard J.A.K., Malget J.M. A convenient cyanide-free “one-pot” synthesis of nido-Me3N-7-CB10H12 and nido-7-CB10H13−. J. Chem. Soc. Dalton Trans. 2002:2624. doi: 10.1039/B200930G. DOI

Franken A., Bullen N.J., Jelínek T., Thornton-Pett M., Teat S.J., Clegg W., Kennedy J.D., Hardie M.J. Structural chemistry of halogenated monocarbaboranes: the extended structures of Cs [1-HCB9H4Br5], Cs[1-HCB11H5Cl6] and Cs[1-HCB11H5Br6] New J. Chem. 2004;28:1499–1505. doi: 10.1039/B410929E. DOI

Franken A., King B.T., Rudolph J., Rao P., Noll B.C., Michl J. Preparation of [closo-CB11H12]− by dichlorocarbene insertion into [nido-B11H14]−. Collect. Czech. Chem. Commun. 2001;66:1238–1249. doi: 10.1135/cccc20011238. DOI

Dunks G.B., Ordonez K.P. A one-step synthesis of B11H14− ion from NaBH4. Inorg. Chem. 1978;17:1514–1516. doi: 10.1021/ic50184a025. DOI

Toom L., Kütt A., Leito I. Simple and scalable synthesis of the carborane anion CB11H12. Dalton Trans. 2019;48:7499–7502. doi: 10.1039/C9DT01062A. PubMed DOI

Krishnamoorthy S., Prakash G.K.S. Silicon-based reagents for difluoromethylation and difluoromethylenation reactions. Synthesis. 2017;49:3394–3406. doi: 10.1055/s-0036-1588489. DOI

Prakash G.K.S., Krishnamoorthy S., Ganesh S.K., Kulkarni A., Haiges R., Olah G.A. N-difluoromethylation of imidazoles and benzimidazoles using the Ruppert-Prakash reagent under neutral conditions. Org. Lett. 2013;16:54–57. doi: 10.1021/ol403007j. PubMed DOI

Rempala P., Michl J. A Proposed Mechanism of [closo-CB11H12]− Formation by dichlorocarbene insertion into [nido-B11H14]−. A computational study by density functional theory. Collect. Czechoslov. Chem. Commun. 2003;68:644–662. doi: 10.1135/cccc20030644. DOI

Howard J.L., Schotten C., Alston S.T., Browne D.L. Preparation of difluoromethylthioethers through difluoromethylation of disulfides using TMS-CF2H. Chem. Commun. 2016;52:8448–8451. doi: 10.1039/C6CC02693A. PubMed DOI

Kosobokov M.D., Dilman A.D., Levin V.V., Struchkova M.I. Difluoro(trimethylsilyl)acetonitrile: Synthesis and fluoroalkylation reactions. J. Org. Chem. 2012;77:5850–5855. doi: 10.1021/jo301094b. PubMed DOI

Tsymbal A.V., Kosobokov M.D., Levin V.V., Struchkova M.I., Dilman A.D. Nucleophilic bromodifluoromethylation of iminium ions. J. Org. Chem. 2014;79:7831–7835. doi: 10.1021/jo501644m. PubMed DOI

Koidan G.N., Marchenko A.P., Pinchuk A.M. Binary triamidophosphite-haloform system as a new source of trihalomethanide ions. J. Gen. Chem. USSR (Engl. Transl.). 1990;60:622–623.

Wu N., Wahl B., Woodward S., Lewis W. 1,4-Addition of TMSCCl3 to nitroalkenes: Efficient reaction conditions and mechanistic understanding. Chem. - A Eur. J. 2014;20:7718–7724. doi: 10.1002/chem.201402394. PubMed DOI PMC

Kaleta J., Akdag A., Crespo R., Piqueras M.-C., Michl J. Evidence for an intermediate in the methylation of CB11H12− with methyl triflate: Comparison of electrophilic substitution in cage boranes and in arenes. ChemPlusChem. 2013;78:1174–1183. doi: 10.1002/cplu.201300219. PubMed DOI

Grimmer S., Ehrlich S., Goerigk L. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Marenich V.A., Cramer J.C., Truhlar G.D. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09, Revision B.01. Gaussian, Inc.; Wallingford, CT, USA: 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...