Photochemical Functionalization of Helicenes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 741623
European Research Council - International
CZ.02.2.69/0.0/0.0/16_027/0007931
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31691389
PubMed Central
PMC6972538
DOI
10.1002/chem.201904169
Knihovny.cz E-zdroje
- Klíčová slova
- C−H activation, electron transfer, helicene functionalizations, organic dyes, photoredox, visible light,
- MeSH
- draslík chemie MeSH
- katalýza MeSH
- kvantová teorie MeSH
- oxidace-redukce MeSH
- polycyklické sloučeniny chemie MeSH
- světlo * MeSH
- uhličitany chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- draslík MeSH
- helicenes MeSH Prohlížeč
- polycyklické sloučeniny MeSH
- potassium carbonate MeSH Prohlížeč
- uhličitany MeSH
Herein, a visible-light photochemical approach for practical helicene functionalization at very mild reaction conditions is described. The photochemical reactions allow for the regiospecific and innate late-stage functionalization of helicenes and are easily executed either through the activation of C(sp2 )-Br bonds in helicenes using K2 CO3 as inorganic base or direct C(sp2 )-H helicene bond functionalization under oxidative photoredox reaction conditions. Overall, using these transformations six different functional groups are introduced to the helicene scaffold through C-C and four different C-heteroatom bond-forming reactions.
Zobrazit více v PubMed
Shen Y., Chen C. F., Chem. Rev. 2012, 112, 1463–1535. PubMed
Moradpour A., Kagan H., Baes M., Morren G., Martin R. H., Tetrahedron 1975, 31, 2139–2143.
Field J. E., Muller G., Riehl J. P., Venkataraman D., J. Am. Chem. Soc. 2003, 125, 11808–11809. PubMed
Tang Y., Cook T. A., Cohen A. E., J. Phys. Chem. A 2009, 113, 6213–6216. PubMed
Morrison D. J., Trefz T. K., Piers W. E., McDonald R., Parvez M., J. Org. Chem. 2005, 70, 5309–5312. PubMed
Ooyama Y., Ito G., Fukuoka H., Nagano T., Kagawa Y., Imae I., Komaguchi K., Harima Y., Tetrahedron 2010, 66, 7268–7271.
Hatakeyama T., Hashimoto S., Oba T., Nakamura M., J. Am. Chem. Soc. 2012, 134, 19600–19603. PubMed
Yang Y., da Costa R. C., Fuchter M. J., Campbell A. J., Nat. Photonics 2013, 7, 634–638.
Reetz M. T., Beuttenmüller E. W., Goddard R., Tetrahedron Lett. 1997, 38, 3211–3214.
Dreher S. D., Katz T. J., Lam K.-C., Rheingold A. L., J. Org. Chem. 2000, 65, 815–822.
Takenaka N., Sarangthem R. S., Captain B., Angew. Chem. Int. Ed. 2008, 47, 9708–9710; PubMed
Angew. Chem. 2008, 120, 9854–9856.
Bender T. P., Wang Z. Y., J. Polym. Sci. Part A 2000, 38, 3991–3996.
Hrbac J., Storch J., Halouzka V., Cirkva V., Matejka P., Vacek J., RSC Adv. 2014, 4, 46102–46105.
Sahasithiwat S., Mophuang T., Menbangpung L., Kamtonwong S., Sooksimuang T., Synth. Met. 2010, 160, 1148–1152.
Shi L., Liu Z., Dong G., Duan L., Qiu Y., Jia J., Guo W., Zhao D., Cui D., Tao X., Chem. Eur. J. 2012, 18, 8092–8099. PubMed
Storch J., Zadny J., Strasak T., Kubala M., Sykora J., Dusek M., Cirkva V., Matejka P., Krbal M., Vacek J., Chem. Eur. J. 2015, 21, 2343–2347. PubMed
Jančařík A., Rybáček J., Cocq K., Vacek Chocholoušová J., Vacek J., Pohl R., Bednárová L., Fiedler P., Císařová I., Stará I. G., Starý I., Angew. Chem. Int. Ed. 2013, 52, 9970–9975; PubMed
Angew. Chem. 2013, 125, 10154–10159.
Hellou N., Srebro-Hooper M., Favereau L., Zinna F., Caytan E., Toupet L., Dorcet V., Jean M., Vanthuyne N., Williams J. A. G., Di Bari L., Autschbach J., Crassous J., Angew. Chem. Int. Ed. 2017, 56, 8236–8239; PubMed
Angew. Chem. 2017, 129, 8348–8351.
Mukhopadhyay A., Hossen T., Ghosh I., Koner A. L., Nau W. M., Sahu K., Moorthy J. N., Chem. Eur. J. 2017, 23, 14797–14805. PubMed
Nečas D., Kaiser R. P., Ulč J., Eur. J. Org. Chem. 2016, 5647–5652.
Kaiser R. P., Ulč J., Císařová I., Nečas D., RSC Adv. 2018, 8, 580–583.
Zhao Z.-H., Zhang M.-Y., Liu D.-H., Zhao C.-H., Org. Lett. 2018, 20, 7590–7593. PubMed
Goretta S., Tasciotti C., Mathieu S., Smet M., Maes W., Chabre Y. M., Dehaen W., Giasson R., Raimundo J. M., Henry C. R., Barth C., Gingras M., Org. Lett. 2009, 11, 3846–3849. PubMed
Jakubec M., Beránek T., Jakubík P., Sýkora J., Žádný J., Církva V., Storch J., J. Org. Chem. 2018, 83, 3607–3616. PubMed
Žádný J., Velíšek P., Jakubec M., Sýkora J., Církva V., Storch J., Tetrahedron 2013, 69, 6213–6218.
Teplý F., Stará I. G., Starý I., Kollárovič A., Šaman D., Vyskočil Š., Fiedler P., J. Org. Chem. 2003, 68, 5193–5197. PubMed
Hellou N., Mace A., Martin C., Dorcet V., Roisnel T., Jean M., Vanthuyne N., Berree F., Carboni B., Crassous J., J. Org. Chem. 2018, 83, 484–490. PubMed
Yoon T. P., Ischay M. A., Du J. N., Nat. Chem. 2010, 2, 527–532. PubMed
Shaw M. H., Twilton J., MacMillan D. W. C., J. Org. Chem. 2016, 81, 6898–6926. PubMed PMC
Prier C. K., Rankic D. A., MacMillan D. W. C., Chem. Rev. 2013, 113, 5322–5363. PubMed PMC
König B., Eur. J. Org. Chem. 2017, 1979–1981.
Narayanam J. M. R., Stephenson C. R. J., Chem. Soc. Rev. 2011, 40, 102–113. PubMed
Romero N. A., Nicewicz D. A., Chem. Rev. 2016, 116, 10075–10166. PubMed
Ghosh I., Khamrai J., Savateev A., Shlapakov N., Antonietti M., Konig B., Science 2019, 365, 360–366. PubMed
Ghosh I., Ghosh T., Bardagi J. I., Konig B., Science 2014, 346, 725–728. PubMed
Ghosh I., Marzo L., Das A., Shaikh R., Konig B., Acc. Chem. Res. 2016, 49, 1566–1577. PubMed
Ghosh I., Shaikh R. S., Konig B., Angew. Chem. Int. Ed. 2017, 56, 8544–8549; PubMed
Angew. Chem. 2017, 129, 8664–8669.
Discekici E. H., Treat N. J., Poelma S. O., Mattson K. M., Hudson Z. M., Luo Y. D., Hawker C. J., de Alaniz J. R., Chem. Commun. 2015, 51, 11705–11708. PubMed
Shaikh R. S., Ghosh I., Konig B., Chem. Eur. J. 2017, 23, 12120–12124. PubMed
Nguyen J. D., D′Amato E. M., Narayanam J. M. R., Stephenson C. R. J., Nat. Chem. 2012, 4, 854–859. PubMed
Ghosh I., Konig B., Angew. Chem. Int. Ed. 2016, 55, 7676–7679; PubMed
Angew. Chem. 2016, 128, 7806–7810. PubMed
Rossi R. A., Pierini A. B., Penenory A. B., Chem. Rev. 2003, 103, 71–167. PubMed
Although the detailed mechanistic pictures of these transformations remain to be elucidated, we anticipate that the photochemical helicene C−Br bond functionalizations reactions proceed through base-promoted activation of C(sp2)−Br bond.
Bardagi J. I., Ghosh I., Schmalzbauer M., Ghosh T., König B., Eur. J. Org. Chem. 2018, 34–40.
Ohkubo K., Mizushima K., Iwata R., Fukuzumi S., Chem. Sci. 2011, 2, 715–722.
McManus J. B., Nicewicz D. A., J. Am. Chem. Soc. 2017, 139, 2880–2883. PubMed PMC
Cai B. G., Xuan J., Xiao W. J., Sci. Bull. 2019, 64, 337–350. PubMed
Luo K., Yang W. C., Wu L., Asian J. Org. Chem. 2017, 6, 350–367.
He D.-Q., Lu H.-Y., Li M., Chen C.-F., Chem. Commun. 2017, 53, 6093–6096. PubMed
Lin W. B., Li M., Fang L., Shen Y., Chen C. F., Chem. Asian J. 2017, 12, 86–94. PubMed
Kaneko E., Matsumoto Y., Kamikawa K., Chem. Eur. J. 2013, 19, 11837–11841. PubMed