New opportunities for designing effective small interfering RNAs

. 2019 Nov 06 ; 9 (1) : 16146. [epub] 20191106

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31695077
Odkazy

PubMed 31695077
PubMed Central PMC6834666
DOI 10.1038/s41598-019-52303-5
PII: 10.1038/s41598-019-52303-5
Knihovny.cz E-zdroje

Small interfering RNAs (siRNAs) that silence genes of infectious diseases are potentially potent drugs. A continuing obstacle for siRNA-based drugs is how to improve their efficacy for adequate dosage. To overcome this obstacle, the interactions of antiviral siRNAs, tested in vivo, were computationally examined within the RNA-induced silencing complex (RISC). Thermodynamics data show that a persistent RISC cofactor is significantly more exothermic for effective antiviral siRNAs than their ineffective counterparts. Detailed inspection of viral RNA secondary structures reveals that effective antiviral siRNAs target hairpin or pseudoknot loops. These structures are critical for initial RISC interactions since they partially lack intramolecular complementary base pairing. Importing two temporary RISC cofactors from magnesium-rich hairpins and/or pseudoknots then kickstarts full RNA hybridization and hydrolysis. Current siRNA design guidelines are based on RNA primary sequence data. Herein, the thermodynamics of RISC cofactors and targeting magnesium-rich RNA secondary structures provide additional guidelines for improving siRNA design.

Zobrazit více v PubMed

Fire A, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI

Miller AD. Delivering the promise of small ncRNA therapeutics. Ther. Deliv. 2014;5:569–589. doi: 10.4155/tde.14.23. PubMed DOI

Miller AD. Delivery of RNAi therapeutics: work in progress. Expert Rev. Med. Devices. 2013;10:781–811. doi: 10.1586/17434440.2013.855471. PubMed DOI

Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev. 2018;10:69–86. doi: 10.1007/s12551-017-0392-1. PubMed DOI PMC

Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018;28:e1976. doi: 10.1002/rmv.1976. PubMed DOI PMC

Reynolds A, et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004;22:326. doi: 10.1038/nbt936. PubMed DOI

Carmona S, et al. Controlling HBV replication in vivo by intravenous administration of triggered PEGylated siRNA-nanoparticles. Mol. Pharm. 2009;6:706–717. doi: 10.1021/mp800157x. PubMed DOI

Watanabe T, et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. Gene Ther. 2006;13:883–892. doi: 10.1038/sj.gt.3302734. PubMed DOI

Park WS, Hayafune M, Miyano-Kurosaki N, Takaku H. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Ther. 2003;10:2046–2050. doi: 10.1038/sj.gt.3302099. PubMed DOI

Martínez MA, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002;16:2385–2390. doi: 10.1097/00002030-200212060-00002. PubMed DOI

Zhou N, Fang J, Mukhtar M, Acheampong E, Pomerantz RJ. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther. 2004;11:1703–1712. doi: 10.1038/sj.gt.3302339. PubMed DOI

Xiaofei E, et al. RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J. Virol. 2012;86:5660–5673. doi: 10.1128/JVI.06338-11. PubMed DOI PMC

Wu X, et al. Inhibitory effect of small interfering RNA on dengue virus replication in mosquito cells. Virol. J. 2010;7:270–277. doi: 10.1186/1743-422X-7-270. PubMed DOI PMC

Ge Q, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. 2003;100:2718–2723. doi: 10.1073/pnas.0437841100. PubMed DOI PMC

Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA. 2016;7:637–660. doi: 10.1002/wrna.1356. PubMed DOI PMC

Schirle NT, Sheu-Gruttadauria J, MacRae IJ. Structural basis for microRNA targeting. Science. 2014;346:608–613. doi: 10.1126/science.1258040. PubMed DOI PMC

Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188–200. doi: 10.1101/gad.862301. PubMed DOI PMC

Egli M. Review DNA-Cation Interactions: Quo Vadis? Chem. Biol. 2002;9:277–286. doi: 10.1016/S1074-5521(02)00116-3. PubMed DOI

Petrov AS, Lamm G, Pack GR. Water-Mediated Magnesium-Guanine Interactions. J. Phys. Chem. B. 2002;106:3294–3300. doi: 10.1021/jp013941m. DOI

Swarts DC, et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 2014;21:743–753. doi: 10.1038/nsmb.2879. PubMed DOI PMC

Wang Y, Li Y, Ma Z, Yang W, Ai C. Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis. PLOS Comput. Biol. 2010;6:e1000866. doi: 10.1371/journal.pcbi.1000866. PubMed DOI PMC

Petrov AS, Bowman JC, Harvey SC, Williams LD. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding. RNA. 2011;17:291–297. doi: 10.1261/rna.2390311. PubMed DOI PMC

Pleij CW, Rietveld K, Bosch L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985;13:1717–1731. doi: 10.1093/nar/13.5.1717. PubMed DOI PMC

Peselis A, Serganov A. Structure and function of pseudoknots involved in gene expression control. Wiley Interdiscip. Rev. RNA. 2014;5:803–822. doi: 10.1002/wrna.1247. PubMed DOI PMC

Sperschneider J, Datta A, Wise MJ. Heuristic RNA pseudoknot prediction including intramolecular kissing hairpins. RNA. 2011;17:27–38. doi: 10.1261/rna.2394511. PubMed DOI PMC

Sheng G, et al. Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Nucleic Acids Res. 2017;45:9149–9163. doi: 10.1093/nar/gkx547. PubMed DOI PMC

Wang C, Le SY, Ali N, Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA. 1995;1:526–537. PubMed PMC

Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA. Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Structure. 2011;19:1456–1466. doi: 10.1016/j.str.2011.08.002. PubMed DOI PMC

Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry. 2009;48:2550–2558. doi: 10.1021/bi8019788. PubMed DOI PMC

Fothergill M, Goodman MF, Petruska J, Warshel A. Structure-Energy Analysis of the Role of Metal Ions in Phosphodiester Bond Hydrolysis by DNA Polymerase I. J. Am. Chem. Soc. 1995;117:11619–11627. doi: 10.1021/ja00152a001. DOI

Dickson KS, Burns CM, Richardson JP. Determination of the Free-Energy Change for Repair of a DNA Phosphodiester Bond. J. Biol. Chem. 2000;275:15828–15831. doi: 10.1074/jbc.M910044199. PubMed DOI

Lott WB, et al. Vitamin B12 and hepatitis C: Molecular biology and human pathology. Proc. Natl. Acad. Sci. 2001;98:4916 LP–4921. doi: 10.1073/pnas.081072798. PubMed DOI PMC

Watts JM, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460:711. doi: 10.1038/nature08237. PubMed DOI PMC

Dethoff EA, et al. Pervasive tertiary structure in the dengue virus RNA. genome. Proc. Natl. Acad. Sci. 2018;115:11513 LP–11518. doi: 10.1073/pnas.1716689115. PubMed DOI PMC

Wilkinson KA, Merino EJ, Weeks KM. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 2006;1:1610–1616. doi: 10.1038/nprot.2006.249. PubMed DOI

Šali A, Blundell TL. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI

Rother M, Rother K, Puton T, Bujnicki JM. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res. 2011;39:4007–4022. doi: 10.1093/nar/gkq1320. PubMed DOI PMC

Sun L-Z, Chen S-J. Monte Carlo Tightly Bound Ion Model: Predicting Ion-Binding Properties of RNA with Ion Correlations and Fluctuations. J. Chem. Theory Comput. 2016;12:3370–3381. doi: 10.1021/acs.jctc.6b00028. PubMed DOI PMC

Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Madadkar-Sobhani A, Guallar V. PELE web server: atomistic study of biomolecular systems at your fingertips. Nucleic Acids Res. 2013;41:W322–W328. doi: 10.1093/nar/gkt454. PubMed DOI PMC

Borrelli KW, Vitalis A, Alcantara R, Guallar V. PELE:  Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique. J. Chem. Theory Comput. 2005;1:1304–1311. doi: 10.1021/ct0501811. PubMed DOI

Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Giannotti MI, et al. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding. J. Phys. Chem. B. 2015;119:12050–12058. doi: 10.1021/acs.jpcb.5b06382. PubMed DOI

Błażewicz M, Popenda M, Szachniuk M, Adamiak RW. RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures. Nucleic Acids Res. 2007;36:D386–D391. PubMed PMC

Lach G, et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res. 2015;44:e63–e63. PubMed PMC

Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010;11:129. doi: 10.1186/1471-2105-11-129. PubMed DOI PMC

Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics. 2015;31:3377–3379. doi: 10.1093/bioinformatics/btv372. PubMed DOI PMC

Soszynska-Jozwiak M, et al. Influenza virus segment 5 (+)RNA - secondary structure and new targets for antiviral strategies. Sci. Rep. 2017;7:15041. doi: 10.1038/s41598-017-15317-5. PubMed DOI PMC

Cohen, J. Statistical power analysis for the behavioral sciences. (L. Erlbaum Associates, 1988).

Läärä E. Statistics: reasoning on uncertainty, and the insignificance of testing null. Ann. Zool. Fennici. 2009;46:138–157. doi: 10.5735/086.046.0206. DOI

Valdés JJ, Butterill PT, Růžek D. Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors. Biochem. Biophys. Res. Commun. 2017;492:652–658. doi: 10.1016/j.bbrc.2017.03.068. PubMed DOI

Valdés JJ, Gil VA, Butterill PT, Růžek D. An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerases. J. Gen. Virol. 2016;97:2552–2565. doi: 10.1099/jgv.0.000569. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...