Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
669609
European Research Council - International
PubMed
28322784
DOI
10.1016/j.bbrc.2017.03.068
PII: S0006-291X(17)30535-1
Knihovny.cz E-zdroje
- Klíčová slova
- Analogue, Flaviviridae, Interrogating, Polymerase, Virus, Water,
- MeSH
- aktivace enzymů MeSH
- Flaviviridae chemie enzymologie MeSH
- inhibitory enzymů chemie MeSH
- nukleosidy chemie MeSH
- RNA-dependentní RNA-polymerasa chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- inhibitory enzymů MeSH
- nukleosidy MeSH
- RNA-dependentní RNA-polymerasa MeSH
The RNA-dependent RNA polymerases of Flaviviridae viruses are crucial for replication. The Flaviviridae polymerase is organized into structural motifs (A-G), with motifs F, A, C and E containing interrogating, priming and catalytic substrate-interacting sites. Modified nucleoside analogues act as antiviral drugs by targeting Flaviviridae polymerases and integrating into the synthesized product causing premature termination. A threonine mutation of a conserved serine residue in motif B of Flaviviridae polymerases renders resistance to 2'-C-methylated nucleoside analogues. The mechanism how this single mutation causes Flaviviridae viruses to escape nucleoside analogues is not yet known. Given the pivotal position of the serine residue in motif B that supports motif F, we hypothesized the threonine mutation causes alterations in nucleoside exploration within the entry tunnel. Implementing a stochastic molecular software showed the all-atom 2'-C-methylated analogue reaction within the active sites of wild type and serine-threonine mutant polymerases from Hepacivirus and Flavivirus. Compared with the wild type, the serine-threonine mutant polymerases caused a significant decrease of analogue contacts with conserved interrogating residues in motif F and a displacement of metal ion cofactors. The simulations significantly showed that during the analogue exploration of the active site the hydrophobic methyl group in the serine-threonine mutant repels water-mediated hydrogen bonds with the 2'-C-methylated analogue, causing a concentration of water-mediated bonds at the substrate-interacting sites. Collectively, the data are an insight into a molecular escape mechanism by Flaviviridae viruses from 2'-C-methylated nucleoside analogue inhibitors.
Citace poskytuje Crossref.org
New opportunities for designing effective small interfering RNAs