• This record comes from PubMed

Identification of a Diagnostic Set of Endomyocardial Biopsy microRNAs for Acute Cellular Rejection Diagnostics in Patients after Heart Transplantation Using Next-Generation Sequencing

. 2019 Nov 06 ; 8 (11) : . [epub] 20191106

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

INTRODUCTION: Acute cellular rejection (ACR) of heart allografts represents the most common reason for graft failure. Endomyocardial biopsies (EMB) are still subject to substantial interobserver variability. Novel biomarkers enabling precise ACR diagnostics may decrease interobserver variability. We aimed to identify a specific subset of microRNAs reflecting the presence of ACR. PATIENTS AND METHODS: Monocentric retrospective study. A total of 38 patients with the anamnesis of ACR were identified and for each patient three consecutive samples of EMB (with, prior and after ACR) were collected. Sixteen trios were used for next-generation sequencing (exploratory cohort); the resting 22 trios were used for validation with qRT-PCR (validation cohort). Statistical analysis was performed using R software. RESULTS: The analysis of the exploration cohort provided the total of 11 miRNAs that were altered during ACR, the three of which (miR-144, miR-589 and miR-182) were further validated in the validation cohort. Using the levels of all 11 miRNAs and principal component analysis, an ACR score was created with the specificity of 91% and sensitivity of 68% for detecting the presence of ACR in the EMB sample. CONCLUSION: We identified a set of microRNAs altered in endomyocardial biopsies during ACR and using their relative levels we created a diagnostic score that can be used for ACR diagnosis.

See more in PubMed

Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18:891–975. PubMed

Bleumink G.S., Knetsch A.M., Sturkenboom M.C.J.M., Straus S.M.J.M., Hofman A., Deckers J.W., Witteman J.C.M., Stricker B.H.C. Quantifying the heart failure epidemic: Prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur. Heart J. 2004;25:1614–1619. doi: 10.1016/j.ehj.2004.06.038. PubMed DOI

Kannel W.B. Incidence and epidemiology of heart failure. Heart Fail. Rev. 2000;5:167–173. doi: 10.1023/A:1009884820941. PubMed DOI

Lund L.H., Edwards L.B., Kucheryavaya A.Y., Benden C., Christie J.D., Dipchand A.I., Dobbels F., Goldfarb S.B., Levvey B.J., Meiser B., et al. The registry of the International Society for Heart and Lung Transplantation: Thirty-first official adult heart transplant report—2014; focus theme: Retransplantation. J. Heart Lung Transpl. 2014;33:996–1008. doi: 10.1016/j.healun.2014.08.003. PubMed DOI

Stoica S.C., Cafferty F., Pauriah M., Taylor C.J., Sharples L.D., Wallwork J., Large S.R., Parameshwar J. The cumulative effect of acute rejection on development of cardiac allograft vasculopathy. J. Heart Lung Transpl. 2006;25:420–425. doi: 10.1016/j.healun.2005.11.449. PubMed DOI

Hammond M.E.H., Revelo M.P., Miller D.V., Snow G.L., Budge D., Stehlik J., Molina K.M., Selzman C.H., Drakos S.G., Rami A., et al. ISHLT pathology antibody mediated rejection score correlates with increased risk of cardiovascular mortality: A retrospective validation analysis. J. Heart Lung Transpl. 2016;35:320–325. doi: 10.1016/j.healun.2015.10.035. PubMed DOI

Caves P.K., Stinson E.B., Billingham M.E., Shumway N.E. Serial transvenous biopsy of the transplanted human heart. Improved management of acute rejection episodes. Lancet. 1974;1:821–826. doi: 10.1016/S0140-6736(74)90480-2. PubMed DOI

Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI

Crespo-Leiro M.G., Zuckermann A., Bara C., Mohacsi P., Schulz U., Boyle A., Ross H.J., Parameshwar J., Zakliczyński M., Fiocchi R., et al. Concordance among pathologists in the second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) Transplantation. 2012;94:1172–1177. doi: 10.1097/TP.0b013e31826e19e2. PubMed DOI

Tang Z., Kobashigawa J., Rafiei M., Stern L.K., Hamilton M. The natural history of biopsy-negative rejection after heart transplantation. J. Transpl. 2013;2013:236720. doi: 10.1155/2013/236720. PubMed DOI PMC

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Falzone L., Lupo G., La Rosa G.R.M., Crimi S., Anfuso C.D., Salemi R., Rapisarda E., Libra M., Candido S. Identification of Novel MicroRNAs and Their Diagnostic and Prognostic Significance in Oral Cancer. Cancers. 2019;11:610. doi: 10.3390/cancers11050610. PubMed DOI PMC

Falzone L., Scola L., Zanghì A., Biondi A., Di Cataldo A., Libra M., Candido S. Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development. Aging. 2018;10:1000–1014. doi: 10.18632/aging.101444. PubMed DOI PMC

Pichler M., Stiegelbauer V., Vychytilova-Faltejskova P., Ivan C., Ling H., Winter E., Zhang X., Goblirsch M., Wulf-Goldenberg A., Ohtsuka M., et al. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:1323–1333. doi: 10.1158/1078-0432.CCR-16-0497. PubMed DOI PMC

Bekris L.M., Leverenz J.B. The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener. Dis. Manag. 2015;5:61–74. doi: 10.2217/nmt.14.52. PubMed DOI

Candido S., Lupo G., Pennisi M., Basile M.S., Anfuso C.D., Petralia M.C., Gattuso G., Vivarelli S., Spandidos D.A., Libra M., et al. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol. Rep. 2019;42:911–922. doi: 10.3892/or.2019.7215. PubMed DOI PMC

Evangelatos G., Fragoulis G.E., Koulouri V., Lambrou G.I. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun. Rev. 2019;2019:102391. doi: 10.1016/j.autrev.2019.102391. PubMed DOI

Yang L., Bian Y., Li Z., Yan Y., Li J., Li W., Zeng L. Identification of potential biomarkers and pathways in ulcerative colitis with combined public mRNA and miRNA expression microarray data analysis. J. Gastrointest. Oncol. 2019;10:847–858. doi: 10.21037/jgo.2019.06.06. PubMed DOI PMC

Mirzaei H., Ferns G.A., Avan A., Mobarhan M.G. Cytokines and MicroRNA in Coronary Artery Disease. Adv. Clin. Chem. 2017;82:47–70. PubMed

Wong L.L., Wang J., Liew O.W., Richards A.M., Chen Y.-T. MicroRNA and Heart Failure. Int. J. Mol. Sci. 2016;17:502. doi: 10.3390/ijms17040502. PubMed DOI PMC

Briasoulis A., Sharma S., Telila T., Mallikethi-Reddy S., Papageorgiou N., Oikonomou E., Tousoulis D. MicroRNAs in Atrial Fibrillation. Curr. Med. Chem. 2019;26:855–863. doi: 10.2174/0929867324666170920151024. PubMed DOI

Di Francesco A., Fedrigo M., Santovito D., Natarelli L., Castellani C., De Pascale F., Toscano G., Fraiese A., Feltrin G., Benazzi E., et al. MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J. Heart Lung Transpl. 2018;37:1329–1340. doi: 10.1016/j.healun.2018.06.010. PubMed DOI

Wei L., Wang M., Qu X., Mah A., Xiong X., Harris A.G.C., Phillips L.K., Martinez O.M., Krams S.M. Differential expression of microRNAs during allograft rejection. Am. J. Transpl. 2012;12:1113–1123. doi: 10.1111/j.1600-6143.2011.03958.x. PubMed DOI PMC

Wei L., Kaul V., Qu X., Xiong X., Lau A.H., Iwai N., Martinez O.M., Krams S.M. Absence of mir-182 Augments Cardiac Allograft Survival. Transplantation. 2017;101:524–530. doi: 10.1097/TP.0000000000001345. PubMed DOI PMC

Dambal S., Shah M., Mihelich B., Nonn L. The microRNA-183 cluster: The family that plays together stays together. Nucleic Acids Res. 2015;43:7173–7188. doi: 10.1093/nar/gkv703. PubMed DOI PMC

Xu Z., Ramachandran S., Gunasekaran M., Zhou F., Trulock E., Kreisel D., Hachem R., Mohanakumar T. MicroRNA-144 dysregulates the transforming growth factor-β signalling cascade and contributes to the development of bronchiolitis obliterans syndrome after human lung transplantation. J. Heart Lung Transpl. 2015;34:1154–1162. doi: 10.1016/j.healun.2015.03.021. PubMed DOI PMC

Hu Y.-W., Hu Y.-R., Zhao J.-Y., Li S.-F., Ma X., Wu S.-G., Lu J.-B., Qiu Y.-R., Sha Y.-H., Wang Y.-C., et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS ONE. 2014;9:e94997. doi: 10.1371/journal.pone.0094997. PubMed DOI PMC

Halushka M.K. MicroRNA-144 is unlikely to play a role in bronchiolitis obliterans syndrome. J. Heart Lung Transpl. 2016;35:543. doi: 10.1016/j.healun.2016.01.008. PubMed DOI

Li C., Liu T., Qi F., Li F., Zhu L., Wang P., Wang H. Analysis of intragraft microRNA expression in a mouse-to-rat cardiac xenotransplantation model. Microsurgery. 2014;34:44–50. doi: 10.1002/micr.22139. PubMed DOI

Van Aelst L.N.L., Summer G., Li S., Gupta S.K., Heggermont W., De Vusser K., Carai P., Naesens M., Van Cleemput J., Van de Werf F., et al. RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. Am. J. Transpl. 2016;16:99–110. doi: 10.1111/ajt.13421. PubMed DOI PMC

Zhang A., Wang K., Zhou C., Gan Z., Ma D., Ye P., Sun Y., Wu J., Huang X., Ren L., et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection. J. Heart Lung Transpl. 2017;36:175–184. doi: 10.1016/j.healun.2016.04.018. PubMed DOI

Fang L., Ellims A.H., Moore X., White D.A., Taylor A.J., Chin-Dusting J., Dart A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 2015;13:314. doi: 10.1186/s12967-015-0672-0. PubMed DOI PMC

Bonauer A., Dimmeler S. The microRNA-17-92 cluster: Still a miRacle? Cell Cycle. 2009;8:3866–3873. doi: 10.4161/cc.8.23.9994. PubMed DOI

Du W., Pan Z., Chen X., Wang L., Zhang Y., Li S., Liang H., Xu C., Zhang Y., Wu Y., et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell. Physiol. Biochem. 2014;34:955–965. doi: 10.1159/000366312. PubMed DOI

Yang S., Fan T., Hu Q., Xu W., Yang J., Xu C., Zhang B., Chen J., Jiang H. Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Mol. Genet. Genom. MGG. 2018;293:883–894. doi: 10.1007/s00438-018-1426-5. PubMed DOI PMC

Charrier H., Cuvelliez M., Dubois-Deruy E., Mulder P., Richard V., Bauters C., Pinet F. Integrative System Biology Analyses Identify Seven MicroRNAs to Predict Heart Failure. Non Coding RNA. 2019;5:22. doi: 10.3390/ncrna5010022. PubMed DOI PMC

Infante T., Forte E., Punzo B., Cademartiri F., Cavaliere C., Soricelli A., Salvatore M., Napoli C. Correlation of Circulating miR-765, miR-93-5p, and miR-433-3p to Obstructive Coronary Heart Disease Evaluated by Cardiac Computed Tomography. Am. J. Cardiol. 2019;124:176–182. doi: 10.1016/j.amjcard.2019.04.016. PubMed DOI

Wang H., Chen F., Tong J., Li Y., Cai J., Wang Y., Li P., Hao Y., Tian W., Lv Y., et al. Circulating microRNAs as novel biomarkers for dilated cardiomyopathy. Cardiol. J. 2017;24:65–73. doi: 10.5603/CJ.a2016.0097. PubMed DOI

Chen F., Yang J., Li Y., Wang H. Circulating microRNAs as novel biomarkers for heart failure. Hell. J. Cardiol. HJC. 2018;59:209–214. doi: 10.1016/j.hjc.2017.10.002. PubMed DOI

Long J., Jiang C., Liu B., Dai Q., Hua R., Chen C., Zhang B., Li H. Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signalling. Cancer Lett. 2018;423:113–126. doi: 10.1016/j.canlet.2017.11.031. PubMed DOI

Zhang F., Li K., Pan M., Li W., Wu J., Li M., Zhao L., Wang H. miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop. J. Exp. Clin. Cancer Res. CR. 2018;37:152. doi: 10.1186/s13046-018-0821-4. PubMed DOI PMC

Yu H., Han Z., Xu Z., An C., Xu L., Xin H. RNA sequencing uncovers the key long non-coding RNAs and potential molecular mechanism contributing to XAV939-mediated inhibition of non-small cell lung cancer. Oncol. Lett. 2019;17:4994–5004. doi: 10.3892/ol.2019.10191. PubMed DOI PMC

Novak J., Sana J., Stracina T., Novakova M., Slaby O. Doxorubicin and Liposomal Doxorubicin Differentially Affect Expression of miR-208a and let-7g in Rat Ventricles and Atria. Cardiovasc. Toxicol. 2017;17:355–359. doi: 10.1007/s12012-016-9393-8. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...