Identification of a Diagnostic Set of Endomyocardial Biopsy microRNAs for Acute Cellular Rejection Diagnostics in Patients after Heart Transplantation Using Next-Generation Sequencing
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31698874
PubMed Central
PMC6912472
DOI
10.3390/cells8111400
PII: cells8111400
Knihovny.cz E-resources
- Keywords
- acute cellular rejection, diagnostics, endomyocardial biopsy, heart transplantation, microRNA,
- MeSH
- Biomarkers metabolism MeSH
- Biopsy methods MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs genetics MeSH
- Young Adult MeSH
- Myocardium metabolism MeSH
- Graft Rejection diagnosis genetics metabolism MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Heart Transplantation methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- MicroRNAs MeSH
INTRODUCTION: Acute cellular rejection (ACR) of heart allografts represents the most common reason for graft failure. Endomyocardial biopsies (EMB) are still subject to substantial interobserver variability. Novel biomarkers enabling precise ACR diagnostics may decrease interobserver variability. We aimed to identify a specific subset of microRNAs reflecting the presence of ACR. PATIENTS AND METHODS: Monocentric retrospective study. A total of 38 patients with the anamnesis of ACR were identified and for each patient three consecutive samples of EMB (with, prior and after ACR) were collected. Sixteen trios were used for next-generation sequencing (exploratory cohort); the resting 22 trios were used for validation with qRT-PCR (validation cohort). Statistical analysis was performed using R software. RESULTS: The analysis of the exploration cohort provided the total of 11 miRNAs that were altered during ACR, the three of which (miR-144, miR-589 and miR-182) were further validated in the validation cohort. Using the levels of all 11 miRNAs and principal component analysis, an ACR score was created with the specificity of 91% and sensitivity of 68% for detecting the presence of ACR in the EMB sample. CONCLUSION: We identified a set of microRNAs altered in endomyocardial biopsies during ACR and using their relative levels we created a diagnostic score that can be used for ACR diagnosis.
Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic
Centre of Cardiovascular Surgery and Organ Transplantation Pekařská 53 65691 Brno Czech Republic
Department of Pathological Physiology Masaryk University Kamenice 5 62500 Brno Czech Republic
See more in PubMed
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016;18:891–975. PubMed
Bleumink G.S., Knetsch A.M., Sturkenboom M.C.J.M., Straus S.M.J.M., Hofman A., Deckers J.W., Witteman J.C.M., Stricker B.H.C. Quantifying the heart failure epidemic: Prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur. Heart J. 2004;25:1614–1619. doi: 10.1016/j.ehj.2004.06.038. PubMed DOI
Kannel W.B. Incidence and epidemiology of heart failure. Heart Fail. Rev. 2000;5:167–173. doi: 10.1023/A:1009884820941. PubMed DOI
Lund L.H., Edwards L.B., Kucheryavaya A.Y., Benden C., Christie J.D., Dipchand A.I., Dobbels F., Goldfarb S.B., Levvey B.J., Meiser B., et al. The registry of the International Society for Heart and Lung Transplantation: Thirty-first official adult heart transplant report—2014; focus theme: Retransplantation. J. Heart Lung Transpl. 2014;33:996–1008. doi: 10.1016/j.healun.2014.08.003. PubMed DOI
Stoica S.C., Cafferty F., Pauriah M., Taylor C.J., Sharples L.D., Wallwork J., Large S.R., Parameshwar J. The cumulative effect of acute rejection on development of cardiac allograft vasculopathy. J. Heart Lung Transpl. 2006;25:420–425. doi: 10.1016/j.healun.2005.11.449. PubMed DOI
Hammond M.E.H., Revelo M.P., Miller D.V., Snow G.L., Budge D., Stehlik J., Molina K.M., Selzman C.H., Drakos S.G., Rami A., et al. ISHLT pathology antibody mediated rejection score correlates with increased risk of cardiovascular mortality: A retrospective validation analysis. J. Heart Lung Transpl. 2016;35:320–325. doi: 10.1016/j.healun.2015.10.035. PubMed DOI
Caves P.K., Stinson E.B., Billingham M.E., Shumway N.E. Serial transvenous biopsy of the transplanted human heart. Improved management of acute rejection episodes. Lancet. 1974;1:821–826. doi: 10.1016/S0140-6736(74)90480-2. PubMed DOI
Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI
Crespo-Leiro M.G., Zuckermann A., Bara C., Mohacsi P., Schulz U., Boyle A., Ross H.J., Parameshwar J., Zakliczyński M., Fiocchi R., et al. Concordance among pathologists in the second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II) Transplantation. 2012;94:1172–1177. doi: 10.1097/TP.0b013e31826e19e2. PubMed DOI
Tang Z., Kobashigawa J., Rafiei M., Stern L.K., Hamilton M. The natural history of biopsy-negative rejection after heart transplantation. J. Transpl. 2013;2013:236720. doi: 10.1155/2013/236720. PubMed DOI PMC
Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Falzone L., Lupo G., La Rosa G.R.M., Crimi S., Anfuso C.D., Salemi R., Rapisarda E., Libra M., Candido S. Identification of Novel MicroRNAs and Their Diagnostic and Prognostic Significance in Oral Cancer. Cancers. 2019;11:610. doi: 10.3390/cancers11050610. PubMed DOI PMC
Falzone L., Scola L., Zanghì A., Biondi A., Di Cataldo A., Libra M., Candido S. Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development. Aging. 2018;10:1000–1014. doi: 10.18632/aging.101444. PubMed DOI PMC
Pichler M., Stiegelbauer V., Vychytilova-Faltejskova P., Ivan C., Ling H., Winter E., Zhang X., Goblirsch M., Wulf-Goldenberg A., Ohtsuka M., et al. Genome-Wide miRNA Analysis Identifies miR-188-3p as a Novel Prognostic Marker and Molecular Factor Involved in Colorectal Carcinogenesis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:1323–1333. doi: 10.1158/1078-0432.CCR-16-0497. PubMed DOI PMC
Bekris L.M., Leverenz J.B. The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener. Dis. Manag. 2015;5:61–74. doi: 10.2217/nmt.14.52. PubMed DOI
Candido S., Lupo G., Pennisi M., Basile M.S., Anfuso C.D., Petralia M.C., Gattuso G., Vivarelli S., Spandidos D.A., Libra M., et al. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol. Rep. 2019;42:911–922. doi: 10.3892/or.2019.7215. PubMed DOI PMC
Evangelatos G., Fragoulis G.E., Koulouri V., Lambrou G.I. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun. Rev. 2019;2019:102391. doi: 10.1016/j.autrev.2019.102391. PubMed DOI
Yang L., Bian Y., Li Z., Yan Y., Li J., Li W., Zeng L. Identification of potential biomarkers and pathways in ulcerative colitis with combined public mRNA and miRNA expression microarray data analysis. J. Gastrointest. Oncol. 2019;10:847–858. doi: 10.21037/jgo.2019.06.06. PubMed DOI PMC
Mirzaei H., Ferns G.A., Avan A., Mobarhan M.G. Cytokines and MicroRNA in Coronary Artery Disease. Adv. Clin. Chem. 2017;82:47–70. PubMed
Wong L.L., Wang J., Liew O.W., Richards A.M., Chen Y.-T. MicroRNA and Heart Failure. Int. J. Mol. Sci. 2016;17:502. doi: 10.3390/ijms17040502. PubMed DOI PMC
Briasoulis A., Sharma S., Telila T., Mallikethi-Reddy S., Papageorgiou N., Oikonomou E., Tousoulis D. MicroRNAs in Atrial Fibrillation. Curr. Med. Chem. 2019;26:855–863. doi: 10.2174/0929867324666170920151024. PubMed DOI
Di Francesco A., Fedrigo M., Santovito D., Natarelli L., Castellani C., De Pascale F., Toscano G., Fraiese A., Feltrin G., Benazzi E., et al. MicroRNA signatures in cardiac biopsies and detection of allograft rejection. J. Heart Lung Transpl. 2018;37:1329–1340. doi: 10.1016/j.healun.2018.06.010. PubMed DOI
Wei L., Wang M., Qu X., Mah A., Xiong X., Harris A.G.C., Phillips L.K., Martinez O.M., Krams S.M. Differential expression of microRNAs during allograft rejection. Am. J. Transpl. 2012;12:1113–1123. doi: 10.1111/j.1600-6143.2011.03958.x. PubMed DOI PMC
Wei L., Kaul V., Qu X., Xiong X., Lau A.H., Iwai N., Martinez O.M., Krams S.M. Absence of mir-182 Augments Cardiac Allograft Survival. Transplantation. 2017;101:524–530. doi: 10.1097/TP.0000000000001345. PubMed DOI PMC
Dambal S., Shah M., Mihelich B., Nonn L. The microRNA-183 cluster: The family that plays together stays together. Nucleic Acids Res. 2015;43:7173–7188. doi: 10.1093/nar/gkv703. PubMed DOI PMC
Xu Z., Ramachandran S., Gunasekaran M., Zhou F., Trulock E., Kreisel D., Hachem R., Mohanakumar T. MicroRNA-144 dysregulates the transforming growth factor-β signalling cascade and contributes to the development of bronchiolitis obliterans syndrome after human lung transplantation. J. Heart Lung Transpl. 2015;34:1154–1162. doi: 10.1016/j.healun.2015.03.021. PubMed DOI PMC
Hu Y.-W., Hu Y.-R., Zhao J.-Y., Li S.-F., Ma X., Wu S.-G., Lu J.-B., Qiu Y.-R., Sha Y.-H., Wang Y.-C., et al. An agomir of miR-144-3p accelerates plaque formation through impairing reverse cholesterol transport and promoting pro-inflammatory cytokine production. PLoS ONE. 2014;9:e94997. doi: 10.1371/journal.pone.0094997. PubMed DOI PMC
Halushka M.K. MicroRNA-144 is unlikely to play a role in bronchiolitis obliterans syndrome. J. Heart Lung Transpl. 2016;35:543. doi: 10.1016/j.healun.2016.01.008. PubMed DOI
Li C., Liu T., Qi F., Li F., Zhu L., Wang P., Wang H. Analysis of intragraft microRNA expression in a mouse-to-rat cardiac xenotransplantation model. Microsurgery. 2014;34:44–50. doi: 10.1002/micr.22139. PubMed DOI
Van Aelst L.N.L., Summer G., Li S., Gupta S.K., Heggermont W., De Vusser K., Carai P., Naesens M., Van Cleemput J., Van de Werf F., et al. RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection. Am. J. Transpl. 2016;16:99–110. doi: 10.1111/ajt.13421. PubMed DOI PMC
Zhang A., Wang K., Zhou C., Gan Z., Ma D., Ye P., Sun Y., Wu J., Huang X., Ren L., et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection. J. Heart Lung Transpl. 2017;36:175–184. doi: 10.1016/j.healun.2016.04.018. PubMed DOI
Fang L., Ellims A.H., Moore X., White D.A., Taylor A.J., Chin-Dusting J., Dart A.M. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 2015;13:314. doi: 10.1186/s12967-015-0672-0. PubMed DOI PMC
Bonauer A., Dimmeler S. The microRNA-17-92 cluster: Still a miRacle? Cell Cycle. 2009;8:3866–3873. doi: 10.4161/cc.8.23.9994. PubMed DOI
Du W., Pan Z., Chen X., Wang L., Zhang Y., Li S., Liang H., Xu C., Zhang Y., Wu Y., et al. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell. Physiol. Biochem. 2014;34:955–965. doi: 10.1159/000366312. PubMed DOI
Yang S., Fan T., Hu Q., Xu W., Yang J., Xu C., Zhang B., Chen J., Jiang H. Downregulation of microRNA-17-5p improves cardiac function after myocardial infarction via attenuation of apoptosis in endothelial cells. Mol. Genet. Genom. MGG. 2018;293:883–894. doi: 10.1007/s00438-018-1426-5. PubMed DOI PMC
Charrier H., Cuvelliez M., Dubois-Deruy E., Mulder P., Richard V., Bauters C., Pinet F. Integrative System Biology Analyses Identify Seven MicroRNAs to Predict Heart Failure. Non Coding RNA. 2019;5:22. doi: 10.3390/ncrna5010022. PubMed DOI PMC
Infante T., Forte E., Punzo B., Cademartiri F., Cavaliere C., Soricelli A., Salvatore M., Napoli C. Correlation of Circulating miR-765, miR-93-5p, and miR-433-3p to Obstructive Coronary Heart Disease Evaluated by Cardiac Computed Tomography. Am. J. Cardiol. 2019;124:176–182. doi: 10.1016/j.amjcard.2019.04.016. PubMed DOI
Wang H., Chen F., Tong J., Li Y., Cai J., Wang Y., Li P., Hao Y., Tian W., Lv Y., et al. Circulating microRNAs as novel biomarkers for dilated cardiomyopathy. Cardiol. J. 2017;24:65–73. doi: 10.5603/CJ.a2016.0097. PubMed DOI
Chen F., Yang J., Li Y., Wang H. Circulating microRNAs as novel biomarkers for heart failure. Hell. J. Cardiol. HJC. 2018;59:209–214. doi: 10.1016/j.hjc.2017.10.002. PubMed DOI
Long J., Jiang C., Liu B., Dai Q., Hua R., Chen C., Zhang B., Li H. Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signalling. Cancer Lett. 2018;423:113–126. doi: 10.1016/j.canlet.2017.11.031. PubMed DOI
Zhang F., Li K., Pan M., Li W., Wu J., Li M., Zhao L., Wang H. miR-589 promotes gastric cancer aggressiveness by a LIFR-PI3K/AKT-c-Jun regulatory feedback loop. J. Exp. Clin. Cancer Res. CR. 2018;37:152. doi: 10.1186/s13046-018-0821-4. PubMed DOI PMC
Yu H., Han Z., Xu Z., An C., Xu L., Xin H. RNA sequencing uncovers the key long non-coding RNAs and potential molecular mechanism contributing to XAV939-mediated inhibition of non-small cell lung cancer. Oncol. Lett. 2019;17:4994–5004. doi: 10.3892/ol.2019.10191. PubMed DOI PMC
Novak J., Sana J., Stracina T., Novakova M., Slaby O. Doxorubicin and Liposomal Doxorubicin Differentially Affect Expression of miR-208a and let-7g in Rat Ventricles and Atria. Cardiovasc. Toxicol. 2017;17:355–359. doi: 10.1007/s12012-016-9393-8. PubMed DOI