Morphological and molecular-genetic characterization of Chloromyxum trilineatum n. sp. (Myxosporea: Bivalvulida) in the gall bladder of pale chub (Zacco platypus) in Japan

. 2019 Dec ; 118 (12) : 3349-3357. [epub] 20191115

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31729574
Odkazy

PubMed 31729574
DOI 10.1007/s00436-019-06500-w
PII: 10.1007/s00436-019-06500-w
Knihovny.cz E-zdroje

The genus Chloromyxum (Myxozoa: Myxosporea: Bivalvulida) is defined as having ridged or smooth bivalvular myxospores containing four polar capsules, with/without caudal filaments. Currently containing more than 140 nominal species, this genus is reasonably speciose with myxospores of unique but heterogeneous morphology. Recent phylogenetic studies have demonstrated its polyphyletic nature. During our myxosporean survey of freshwater fish, a new coelozoic myxosporean species, Chloromyxum trilineatum n. sp., was detected in the gall bladder of the pale chub, Zacco platypus (Cypriniformes: Cyprinidae), which originated from central Japan. Spores were subspherical, measuring 8.5-9.1 (8.8) μm in length, 7.6-8.2 (8.0) μm in width, and 6.8-7.8 (7.4) μm in thickness (n = 20). The valvular surface was smooth and three or four distinct ridges ran parallel to the suture line. Four almost equal polar capsules, 2.9-3.8 (3.3) μm in length and 1.6-2.4 (2.0) μm in width, assembled at the apical part of the spores. The partial nucleotide sequence of the 18S ribosomal RNA gene, 2014 bp in length, was closest to that of morphologically distinct Chloromyxum ellipticum, infecting the gall bladder of grass carp (Ctenopharyngodon idella) in China with 96.99% (1673/1725) identity and three insertion/deletion (indel) sites, followed by Chloromyxum legeri, infecting the gall bladder of common carp (Cyprinus carpio) in the Czech Republic with 89.97% (1803/2004) identity and 14 indel sites. Other myxosporean species, including Chloromyxum spp. from the gall bladder or urinary system of freshwater and marine fish, were phylogenetically distant from the present species.

Zobrazit více v PubMed

J Eukaryot Microbiol. 2003 Nov-Dec;50(6):463-70 PubMed

Parasitol Res. 2010 Sep;107(4):865-72 PubMed

J Parasitol. 2013 Apr;99(2):307-17 PubMed

Folia Parasitol (Praha). 2004 Jun;51(2-3):211-4 PubMed

Dis Aquat Organ. 2009 May 27;85(1):41-51 PubMed

Parasitol Res. 2006 Jun;99(1):90-6 PubMed

Parasitol Res. 2011 Mar;108(3):573-83 PubMed

Parasitol Res. 2017 Sep;116(9):2427-2441 PubMed

J Parasitol. 2006 Apr;92(2):357-63 PubMed

Parasitol Res. 2010 Nov;107(6):1299-306 PubMed

Folia Parasitol (Praha). 2014 Feb;61(1):1-10 PubMed

J Wildl Dis. 1980 Apr;16(2):233-6 PubMed

Parasitol Res. 2013 Nov;112(11):3817-23 PubMed

Parasitol Res. 2012 Aug;111(2):819-26 PubMed

Syst Parasitol. 2012 Nov;83(3):203-25 PubMed

J Eukaryot Microbiol. 2011 Jan-Feb;58(1):50-9 PubMed

Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 PubMed

Parasitol Res. 2018 Oct;117(10):3145-3156 PubMed

Parasitol Res. 2010 Jun;107(1):67-73 PubMed

Parasitol Res. 2017 Aug;116(8):2239-2248 PubMed

Parasite. 2018;25:47 PubMed

Parasitol Res. 2013 May;112(5):1991-2003 PubMed

J Fish Dis. 2010 Aug;33(8):625-38 PubMed

Syst Biol. 2003 Oct;52(5):696-704 PubMed

Folia Parasitol (Praha). 2006 Mar;53(1):1-36 PubMed

J Eukaryot Microbiol. 2000 May-Jun;47(3):309-18 PubMed

J Parasitol. 2008 Dec;94(6):1322-34 PubMed

Parasitol Res. 2016 Sep;115(9):3567-74 PubMed

Dis Aquat Organ. 2001 Oct 8;46(3):197-212 PubMed

Parasitol Res. 2017 May;116(5):1479-1486 PubMed

Eur J Protistol. 2009 May;45(2):139-46 PubMed

Parasitol Res. 2013 Jan;112(1):289-96 PubMed

Protist. 2006 Jun;157(2):173-83 PubMed

J Parasitol. 2015 Oct;101(5):577-86 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

Syst Biol. 2006 Aug;55(4):539-52 PubMed

Int J Parasitol. 2006 Dec;36(14):1521-34 PubMed

Parasitol Int. 2012 Jun;61(2):267-74 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...