• This record comes from PubMed

Depletion of KNL2 Results in Altered Expression of Genes Involved in Regulation of the Cell Cycle, Transcription, and Development in Arabidopsis

. 2019 Nov 15 ; 20 (22) : . [epub] 20191115

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
"MSCAfellow@MUNI" (No. CZ.02.2.69/0.0/0.0/17_050/0008496 European Regional Development Fund-Project
LE2299/1-2 DFG CEP Register
HO 1779/30-1 DFG CEP Register
19-13848S Czech grant agency
No. CZ.02.1.01/0.0/0.0/16_019/0000827 Czech grant agency

Centromeres contain specialized nucleosomes at which histone H3 is partially replaced by the centromeric histone H3 variant cenH3 that is required for the assembly, maintenance, and proper function of kinetochores during mitotic and meiotic divisions. Previously, we identified a KINETOCHORE NULL 2 (KNL2) of Arabidopsis thaliana that is involved in the licensing of centromeres for the cenH3 recruitment. We also demonstrated that a knockout mutant for KNL2 shows mitotic and meiotic defects, slower development, reduced growth rate, and fertility. To analyze an effect of KNL2 mutation on global gene transcription of Arabidopsis, we performed RNA-sequencing experiments using seedling and flower bud tissues of knl2 and wild-type plants. The transcriptome data analysis revealed a high number of differentially expressed genes (DEGs) in knl2 plants. The set was enriched in genes involved in the regulation of the cell cycle, transcription, development, and DNA damage repair. In addition to comprehensive information regarding the effects of KNL2 mutation on the global gene expression, physiological changes in plants are also presented, which provides an integrated understanding of the critical role played by KNL2 in plant growth and development.

See more in PubMed

Talbert P.B., Henikoff S. Phylogeny as the basis for naming histones. Trends Genet. 2013;29:499–500. doi: 10.1016/j.tig.2013.06.009. PubMed DOI

Silva M.C., Jansen L.E. At the right place at the right time: Novel CENP-A binding proteins shed light on centromere assembly. Chromosoma. 2009;118:567–574. doi: 10.1007/s00412-009-0227-3. PubMed DOI

Talbert P.B., Henikoff S. Transcribing centromeres: Noncoding RNAs and kinetochore assembly. Trends Genet. 2018;34:587–599. doi: 10.1016/j.tig.2018.05.001. PubMed DOI

Perea-Resa C., Blower M.D. Centromere biology: Transcription goes on stage. Mol. Cell Biol. 2018;38:e00263-18. doi: 10.1128/MCB.00263-18. PubMed DOI PMC

Bobkov G.O.M., Gilbert N., Heun P. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J. Cell Biol. 2018;217:1957–1972. doi: 10.1083/jcb.201611087. PubMed DOI PMC

Bergmann J.H., Rodriguez M.G., Martins N.M., Kimura H., Kelly D.A., Masumoto H., Larionov V., Jansen L.E., Earnshaw W.C. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 2011;30:328–340. doi: 10.1038/emboj.2010.329. PubMed DOI PMC

Kim I.S., Lee M., Park K.C., Jeon Y., Park J.H., Hwang E.J., Jeon T.I., Ko S., Lee H., Baek S.H., et al. Roles of Mis18alpha in epigenetic regulation of centromeric chromatin and CENP-A loading. Mol. Cell. 2012;46:260–273. doi: 10.1016/j.molcel.2012.03.021. PubMed DOI

Nardi I.K., Zasadzinska E., Stellfox M.E., Knippler C.M., Foltz D.R. Licensing of centromeric chromatin assembly through the Mis18alpha-Mis18beta heterotetramer. Mol. Cell. 2016;61:774–787. doi: 10.1016/j.molcel.2016.02.014. PubMed DOI PMC

Fujita Y., Hayashi T., Kiyomitsu T., Toyoda Y., Kokubu A., Obuse C., Yanagida M. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell. 2007;12:17–30. doi: 10.1016/j.devcel.2006.11.002. PubMed DOI

Maddox P.S., Hyndman F., Monen J., Oegema K., Desai A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 2007;176:757–763. doi: 10.1083/jcb.200701065. PubMed DOI PMC

Foltz D.R., Jansen L.E., Bailey A.O., Yates J.R., 3rd, Bassett E.A., Wood S., Black B.E., Cleveland D.W. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell. 2009;137:472–484. doi: 10.1016/j.cell.2009.02.039. PubMed DOI PMC

Barnhart M.C., Kuich P.H., Stellfox M.E., Ward J.A., Bassett E.A., Black B.E., Foltz D.R. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 2011;194:229–243. doi: 10.1083/jcb.201012017. PubMed DOI PMC

Lermontova I., Kuhlmann M., Friedel S., Rutten T., Heckmann S., Sandmann M., Demidov D., Schubert V., Schubert I. Arabidopsis KINETOCHORE NULL2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell. 2013;25:3389–3404. doi: 10.1105/tpc.113.114736. PubMed DOI PMC

Sandmann M., Talbert P., Demidov D., Kuhlmann M., Rutten T., Conrad U., Lermontova I. Targeting of arabidopsis KNL2 to centromeres depends on the conserved CENPC-k motif in Its C terminus. Plant Cell. 2017;29:144–155. doi: 10.1105/tpc.16.00720. PubMed DOI PMC

Zhang D., Martyniuk C.J., Trudeau V.L. SANTA domain: A novel conserved protein module in Eukaryota with potential involvement in chromatin regulation. Bioinformatics. 2006;22:2459–2462. doi: 10.1093/bioinformatics/btl414. PubMed DOI

Kral L. Possible identification of CENP-C in fish and the presence of the CENP-C motif in M18BP1 of vertebrates. F1000Research. 2015;4:474. doi: 10.12688/f1000research.6823.1. PubMed DOI PMC

French B.T., Westhorpe F.G., Limouse C., Straight A.F. Xenopus laevis M18BP1 directly binds existing CENP-A nucleosomes to promote centromeric chromatin assembly. Dev. Cell. 2017;42:190e10–199e10. doi: 10.1016/j.devcel.2017.06.021. PubMed DOI PMC

Hori T., Shang W.H., Hara M., Ariyoshi M., Arimura Y., Fujita R., Kurumizaka H., Fukagawa T. Association of M18BP1/KNL2 with CENP-A nucleosome is essential for centromere formation in non-mammalian vertebrates. Dev. Cell. 2017;42:181e3–189e3. doi: 10.1016/j.devcel.2017.06.019. PubMed DOI

Liebelt F., Jansen N.S., Kumar S., Gracheva E., Claessens L.A., Verlaan-de Vries M., Willemstein E., Vertegaal A.C.O. The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation. Nat. Commun. 2019;10:3987. doi: 10.1038/s41467-019-11773-x. PubMed DOI PMC

Silva M.C., Bodor D.L., Stellfox M.E., Martins N.M., Hochegger H., Foltz D.R., Jansen L.E. Cdk activity couples epigenetic centromere inheritance to cell cycle progression. Dev. Cell. 2012;22:52–63. doi: 10.1016/j.devcel.2011.10.014. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Boyle E.I., Weng S., Gollub J., Jin H., Botstein D., Cherry J.M., Sherlock G. GO: TermFinder—Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics. 2004;20:3710–3715. doi: 10.1093/bioinformatics/bth456. PubMed DOI PMC

Buschmann H., Lloyd C.W. Arabidopsis mutants and the network of microtubule-associated functions. Mol. Plant. 2008;1:888–898. doi: 10.1093/mp/ssn060. PubMed DOI

Niu B., Wang L., Zhang L., Ren D., Ren R., Copenhaver G.P., Ma H., Wang Y. Arabidopsis cell division cycle 20.1 is required for normal meiotic spindle assembly and chromosome segregation. Plant Cell. 2015;27:3367–3382. doi: 10.1105/tpc.15.00834. PubMed DOI PMC

Kevei Z., Baloban M., Da Ines O., Tiricz H., Kroll A., Regulski K., Mergaert P., Kondorosi E. Conserved CDC20 cell cycle functions are carried out by two of the five isoforms in Arabidopsis thaliana. PLoS ONE. 2011;6:e20618. doi: 10.1371/journal.pone.0020618. PubMed DOI PMC

Bucher E., Reinders J., Mirouze M. Epigenetic control of transposon transcription and mobility in Arabidopsis. Curr. Opin. Plant Biol. 2012;15:503–510. doi: 10.1016/j.pbi.2012.08.006. PubMed DOI

Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 2007;8:272–285. doi: 10.1038/nrg2072. PubMed DOI

Deniz O., Frost J.M., Branco M.R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019;20:417–431. doi: 10.1038/s41576-019-0106-6. PubMed DOI

Rangwala S.H., Richards E.J. Differential epigenetic regulation within an Arabidopsis retroposon family. Genetics. 2007;176:151–160. doi: 10.1534/genetics.107.071092. PubMed DOI PMC

Zhang M., Wang C., Lin Q., Liu A., Wang T., Feng X., Liu J., Han H., Ma Y., Bonea D., et al. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis. Plant J. Cell Mol. Biol. 2015;83:582–599. doi: 10.1111/tpj.12911. PubMed DOI

Munoz-Bertomeu J., Cascales-Minana B., Mulet J.M., Baroja-Fernandez E., Pozueta-Romero J., Kuhn J.M., Segura J., Ros R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol. 2009;151:541–558. doi: 10.1104/pp.109.143701. PubMed DOI PMC

Garay-Arroyo A., Ortiz-Moreno E., de la Paz Sanchez M., Murphy A.S., Garcia-Ponce B., Marsch-Martinez N., de Folter S., Corvera-Poire A., Jaimes-Miranda F., Pacheco-Escobedo M.A., et al. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J. 2013;32:2884–2895. doi: 10.1038/emboj.2013.216. PubMed DOI PMC

Tapia-Lopez R., Garcia-Ponce B., Dubrovsky J.G., Garay-Arroyo A., Perez-Ruiz R.V., Kim S.H., Acevedo F., Pelaz S., Alvarez-Buylla E.R. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol. 2008;146:1182–1192. doi: 10.1104/pp.107.108647. PubMed DOI PMC

Yamagishi K., Nagata N., Yee K.M., Braybrook S.A., Pelletier J., Fujioka S., Yoshida S., Fischer R.L., Goldberg R.B., Harada J.J. TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis. Plant Physiol. 2005;139:163–173. doi: 10.1104/pp.105.060467. PubMed DOI PMC

Srivastava R., Liu J.X., Guo H., Yin Y., Howell S.H. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J. Cell Mol. Biol. 2009;59:930–939. doi: 10.1111/j.1365-313X.2009.03926.x. PubMed DOI

Manova V., Gruszka D. DNA damage and repair in plants—From models to crops. Front. Plant Sci. 2015;6:885. doi: 10.3389/fpls.2015.00885. PubMed DOI PMC

Li W., Chen C., Markmann-Mulisch U., Timofejeva L., Schmelzer E., Ma H., Reiss B. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc. Natl. Acad. Sci. USA. 2004;101:10596–10601. doi: 10.1073/pnas.0404110101. PubMed DOI PMC

Yang C., Wang H., Xu Y., Brinkman K.L., Ishiyama H., Wong S.T., Xu B. The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair. 2012;11:185–191. doi: 10.1016/j.dnarep.2011.10.018. PubMed DOI PMC

Zeitlin S.G., Baker N.M., Chapados B.R., Soutoglou E., Wang J.Y., Berns M.W., Cleveland D.W. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc. Natl. Acad. Sci. USA. 2009;106:15762–15767. doi: 10.1073/pnas.0908233106. PubMed DOI PMC

Jin J., Tian F., Yang D.C., Meng Y.Q., Kong L., Luo J., Gao G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–D1045. doi: 10.1093/nar/gkw982. PubMed DOI PMC

Phukan U.J., Jeena G.S., Shukla R.K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 2016;7:760. doi: 10.3389/fpls.2016.00760. PubMed DOI PMC

Jiang J., Ma S., Ye N., Jiang M., Cao J., Zhang J. WRKY transcription factors in plant responses to stresses. J. Integr. Plant Biol. 2017;59:86–101. doi: 10.1111/jipb.12513. PubMed DOI

Finatto T., Viana V.E., Woyann L.G., Busanello C., da Maia L.C., de Oliveira A.C. Can WRKY transcription factors help plants to overcome environmental challenges? Genet. Mol. Biol. 2018;41:533–544. doi: 10.1590/1678-4685-gmb-2017-0232. PubMed DOI PMC

Suzuki N., Rizhsky L., Liang H., Shuman J., Shulaev V., Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 2005;139:1313–1322. doi: 10.1104/pp.105.070110. PubMed DOI PMC

Chen J., Nolan T.M., Ye H., Zhang M., Tong H., Xin P., Chu J., Chu C., Li Z., Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell. 2017;29:1425–1439. doi: 10.1105/tpc.17.00364. PubMed DOI PMC

Ding Z.J., Yan J.Y., Xu X.Y., Yu D.Q., Li G.X., Zhang S.Q., Zheng S.J. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J. Cell Mol. Biol. 2014;79:13–27. doi: 10.1111/tpj.12538. PubMed DOI

Sheikh A.H., Eschen-Lippold L., Pecher P., Hoehenwarter W., Sinha A.K., Scheel D., Lee J. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in arabidopsis THALIANA. Front. Plant Sci. 2016;7:61. doi: 10.3389/fpls.2016.00061. PubMed DOI PMC

Krishnaswamy S., Verma S., Rahman M.H., Kav N.N. Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol. Biol. 2011;75:107–127. doi: 10.1007/s11103-010-9711-7. PubMed DOI

Matias-Hernandez L., Aguilar-Jaramillo A.E., Marin-Gonzalez E., Suarez-Lopez P., Pelaz S. RAV genes: Regulation of floral induction and beyond. Ann. Bot. 2014;114:1459–1470. doi: 10.1093/aob/mcu069. PubMed DOI PMC

Higginson T., Li S.F., Parish R.W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. Cell Mol. Biol. 2003;35:177–192. doi: 10.1046/j.1365-313X.2003.01791.x. PubMed DOI

Adamczyk B.J., Fernandez D.E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 2009;149:1713–1723. doi: 10.1104/pp.109.135806. PubMed DOI PMC

Verelst W., Twell D., de Folter S., Immink R., Saedler H., Munster T. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol. 2007;8:R249. doi: 10.1186/gb-2007-8-11-r249. PubMed DOI PMC

Smaczniak C., Immink R.G., Angenent G.C., Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development. 2012;139:3081–3098. doi: 10.1242/dev.074674. PubMed DOI

Perez-Ruiz R.V., Garcia-Ponce B., Marsch-Martinez N., Ugartechea-Chirino Y., Villajuana-Bonequi M., de Folter S., Azpeitia E., Davila-Velderrain J., Cruz-Sanchez D., Garay-Arroyo A., et al. XAANTAL2 (AGL14) Is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions. Mol. Plant. 2015;8:796–813. doi: 10.1016/j.molp.2015.01.017. PubMed DOI

Smyth D.R., Bowman J.L., Meyerowitz E.M. Early flower development in Arabidopsis. Plant Cell. 1990;2:755–767. PubMed PMC

Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. [(accessed on 24 November 2010)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Bouché F., Lobet G., Tocquin P., Périlleux C. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 2016;44:D1167–D1171. doi: 10.1093/nar/gkv1054. PubMed DOI PMC

Meinke D., Muralla R., Sweeney C., Dickerman A. Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci. 2008;13:483–491. doi: 10.1016/j.tplants.2008.06.003. PubMed DOI

Arvidsson S., Kwasniewski M., Riano-Pachon D.M., Mueller-Roeber B. QuantPrime—A flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform. 2008;9:465. doi: 10.1186/1471-2105-9-465. PubMed DOI PMC

Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...