Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-10832S
Grantová Agentura České Republiky - International
18-02597S
Grantová Agentura České Republiky - International
RVO 61388963
Akademie Věd České Republiky - International
PubMed
31763706
DOI
10.1002/elps.201900352
Knihovny.cz E-zdroje
- Klíčová slova
- Affinity capillary electrophoresis, Binding constant, Cyclodextrins, Electrophoretic mobility, Ionic strength,
- MeSH
- cyklodextriny chemie MeSH
- elektroforéza kapilární metody MeSH
- molekulární modely MeSH
- osmolární koncentrace MeSH
- sírany chemie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklodextriny MeSH
- sírany MeSH
In this study, the apparent binding constants and limiting mobilities of the multiply charged complexes of the Δ- and Λ-enantiomers of Ru(II)- and Fe(II)-polypyridyl associates ([Ru(2,2'-bipyridine)3 ]2+ , [Ru(1,10-phenanthroline)3 ]2+ , and [Fe(1,10-phenanthroline)3 ]2+ ) with single-isomer 2,3-diacetylated-6-sulfated-cyclodextrins (CDs) (12Ac-6S-α-CD, 14Ac-7S-β-CD, and 16Ac-8S-γ-CD) were determined by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Two limiting models were tested for the ionic strength correction of the actual mobilities based on an empirical relation for the ionic strength correction of multivalent ionic species. In model 1, the nominal values of the charge numbers (zS,nom ) and analytical concentrations (cS,nom ) of the above CD selectors in the BGEs were applied for calculation of the BGE ionic strength, as usual. In model 2, the CD selectors were considered as singly charged species (zS = -1) with |zS,nom |-times higher concentrations in the BGE than their analytical concentrations (cS = |zS,nom | × cS,nom ) in the calculation of the BGE ionic strength. In all three cases-with uncorrected actual mobilities as well as with actual mobilities corrected according to the two limiting models-the measured effective mobilities of the above enantiomers fit well the theoretical curves of their mobility dependences on the CD selectors concentrations in the BGE, with high average coefficients of determination (R2 = 0.9890-0.9995). Nevertheless, the best physico-chemically meaningful values of the apparent binding constants and the limiting mobilities of the enantiomer-CDs complexes with low RSDs were obtained using the actual mobilities of the species involved corrected according to model 2.
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague 6 Czechia
Texas A and M University Department Chemistry College Station TX USA
Zobrazit více v PubMed
Riesova, M., Svobodova, J., Uselova, K., Tosner, Z., Zuskova, I., Gas, B., J. Chromatogr. A 2014, 1364, 276-288.
Aranyi, A., Peter, A., Ilisz, I., Fulop, F., Scriba, G. K. E., Electrophoresis 2014, 35, 2848-2854.
Wahl, J., Furuishi, T., Yonemochi, E., Meinel, L., Holzgrabe, U., Electrophoresis 2017, 38, 1188-1200.
Chankvetadze, B., J. Chromatogr. A 2018, 1567, 2-25.
Nevidalova, H., Michalcova, L., Glatz, Z., Electrophoresis 2018, 39, 581-589.
Rafols, C., Amezqueta, S., Fuguet, E., Bosch, E., J. Pharm. Biomed. Anal. 2018, 150, 452-459.
Kim, V., Joost, W., Henriette, D., Ine, V., Pieter, A., Katrien, L., Isabel, S., J. Pharm. Sci. 2014, 103, 2565-2570.
Krait, S., Salgado, A., Chankvetadze, B., Gago, F., Scriba, G. K. E., J. Chromatogr. A 2018, 1567, 198-210.
Greno, M., Salgado, A., Castro-Puyana, M., Marina, M. L., Electrophoresis 2019, 40, 1913-1920.
Chen, Z., Weber, S. G., TrAC Trends Anal. Chem. 2008, 27, 738-748.
Jonker, N., Kool, J., Irth, H., Niessen, W. M. A., Anal. Bioanal. Chem. 2011, 399, 2669-2681.
Kitova, E. N., El-Hawiet, A., Schnier, P. D., Klassen, J. S., J. Am. Soc. Mass Spectrom. 2012, 23, 431-441.
Hage, D. S., Anguizola, J. A., Bi, C., Li, R., Matsuda, R., Papastavros, E., Pfaunmiller, E., Vargas, J., Zheng, X. W., J. Pharm. Biomed. Anal. 2012, 69, 93-105.
Krause, F., Electrophoresis 2006, 27, 2759-2781.
Dvorak, M., Svobodova, J., Benes, M., Gas, B., Electrophoresis 2013, 34, 761-767.
Pan, Y. C., Karns, K., Herr, A. E., Electrophoresis 2014, 35, 2078-2090.
Alhazmi, H. A., Javed, S. A., Ahsan, W., Rehmana, Z., Al Bratty, M., El Deeb, S., Saleh, S. F., Microchem. J. 2019, 145, 259-265.
Nevidalova, H., Michalcova, L., Glatz, Z., Electrophoresis 2019, 40, 625-642.
Romano, E. F., Quirino, J. P., Bioanalysis 2018, 10, 1143-1159.
Lounis, F. M., Chamieh, J., Leclercq, L., Gonzalez, P., Cottet, H., Soft Matter 2016, 12, 9728-9737.
Krylov, S. N., Electrophoresis 2007, 28, 69-88.
Bao, J. Y., Krylov, S. N., Anal. Chem. 2012, 84, 6944-6947.
Ruzicka, M., Koval, D., Vavra, J., Reyes-Gutierrez, P. E., Teply, F., Kasicka, V., J. Chromatogr. A 2016, 1467, 417-426.
Ansorge, M., Dubsky, P., Uselova, K., Electrophoresis 2018, 39, 742-751.
Solinova, V., Zakova, L., Jiracek, J., Kasicka, V., Anal. Chim. Acta 2019, 1052, 170-178.
Jiang, C. X., Armstrong, D. W., Electrophoresis 2010, 31, 17-27.
Galievsky, V. A., Stasheuski, A. S., Krylov, S. N., Anal. Chem. 2015, 87, 157-171.
Dubsky, P., Dvorak, M., Ansorge, M., Anal. Bioanal. Chem. 2016, 408, 8623-8641.
Olabi, M., Stein, M., Watzig, H., Methods 2018, 146, 76-92.
Ostergaard, J., Jensen, H., Hoim, R., J. Sep. Sci. 2009, 32, 1712-1721.
Allmendinger, A., Dieu, L. H., Fischer, S., Mueller, R., Mahler, H. C., Huwyler, J., J. Pharm. Biomed. Anal. 2014, 99, 51-58.
Solinova, V., Kasicka, V., Koval, D., Cesnek, M., Holy, A., Electrophoresis 2006, 27, 1006-1019.
Ehala, S., Dybal, J., Makrlik, E., Kasicka, V., J. Sep. Sci. 2009, 32, 597-604.
Falkenhagen, H., Leist, M., Kelbg, G., Ann. Phys. 1952, 11, 51-59.
Pitts, E., Proc. R. Soc. London Ser. A 1953, 217, 43-70.
Li, D. M., Fu, S. L., Lucy, C. A., Anal. Chem. 1999, 71, 687-699.
Koval, D., Kasicka, V., Zuskova, I., Electrophoresis 2005, 26, 3221-3231.
Ehala, S., Marklik, E., Toman, P., Kasicka, V., Electrophoresis 2010, 31, 702-708.
Benes, M., Zuskova, I., Svobodova, J., Gas, B., Electrophoresis 2012, 33, 1032-1039.
Ibrahim, A., Allison, S. A., Cottet, H., Anal. Chem. 2012, 84, 9422-9430.
Friedl, W., Reijenga, J. C., Kenndler, E., J. Chromatogr. A 1995, 709, 163-170.
Maynard, D. K., Vigh, G., Electrophoresis 2001, 22, 3152-3162.
Sazelova, P., Koval, D., Severa, L., Teply, F., Kasicka, V., Electrophoresis 2017, 38, 1913-1921.
Koval, D., Kasicka, V., Cottet, H., Anal. Biochem. 2011, 413, 8-15.