Caseinate-Stabilized Emulsions of Black Cumin and Tamanu Oils: Preparation, Characterization and Antibacterial Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU 1 - LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31783677
PubMed Central
PMC6960556
DOI
10.3390/polym11121951
PII: polym11121951
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, black cumin (Nigella sativa) seed oil, emulsion, formulation, tamanu (Calophyllum inophyllum) seed oil,
- Publikační typ
- časopisecké články MeSH
Caseinate-stabilized emulsions of black cumin (Nigella sativa) and tamanu (Calophyllum inophyllum) oils were studied in terms of preparation, characterization, and antibacterial properties. The oils were described while using their basic characteristics, including fatty acid composition and scavenging activity. The oil-in-water (o/w) emulsions containing the studied oils were formulated, and the influence of protein stabilizer (sodium caseinate (CAS), 1-12 wt%), oil contents (5-30 wt%), and emulsification methods (high-shear homogenization vs sonication) on the emulsion properties were investigated. It was observed that, under both preparation methods, emulsions of small, initial droplet sizes were predominantly formed with CAS content that was higher than 7.5 wt%. Sonication was a more efficient emulsification procedure and was afforded emulsions with smaller droplet size throughout the entire used concentration ranges of oils and CAS when compared to high-shear homogenization. At native pH of ~ 6.5, all of the emulsions exhibited negative zeta potential that originated from the presence of caseinate. The antibacterial activities of both oils and their emulsions were investigated with respect to the growth suppression of common spoilage bacteria while using the disk diffusion method. The oils and selected emulsions were proven to act against gram positive strains, mainly against Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus); regrettably, the gram negative species were fully resistant against their action.
Zobrazit více v PubMed
Léguillier T., Lecsö-Bornet M., Lémus C., Rousseau-Ralliard D., Lebouvier N., Hnawia E., Nour M., Aalbersberg W., Ghazi K., Raharivelomanana P., et al. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum Inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLoS ONE. 2015;10:e0138602. doi: 10.1371/journal.pone.0138602. PubMed DOI PMC
Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessì M.A., Ozcelik B., Koca U. Chemical Composition and in Vitro Bioactivity of the Volatile and Fixed Oils of Nigella Sativa, L. Extracted by Supercritical Carbon Dioxide. Ind. Crop. Prod. 2013;46:317–323. doi: 10.1016/j.indcrop.2013.02.013. DOI
Amin B., Hosseinzadeh H. Black Cumin (Nigella Sativa) and its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-Inflammatory Effects. Planta Med. 2016;82:8–16. doi: 10.1055/s-0035-1557838. PubMed DOI
Ramadan M., Asker M., Tadros M. Antiradical and Antimicrobial Properties of Cold-Pressed Black Cumin and Cumin Oils. Eur. Food Res. Technol. 2012;234:833–844. doi: 10.1007/s00217-012-1696-9. DOI
Hassanien M.F.R., Assiri A.M.A., Alzohairy A.M., Oraby H.F. Health-Promoting Value and Food Applications of Black Cumin Essential Oil: An Overview. J. Food Sci. Technol. 2015;52:6136–6142. doi: 10.1007/s13197-015-1785-4. PubMed DOI PMC
Bourgou S., Pichette A., Marzouk B., Legault J. Bioactivities of Black Cumin Essential Oil and its Main Terpenes from Tunisia. S. Afr. J. Bot. 2010;76:210–216. doi: 10.1016/j.sajb.2009.10.009. DOI
Mohammed N.K., Tan C.P., Abd Manap M.Y., Muhialdin B.J., Hussin A.S.M. Production of Functional Non-Dairy Creamer using Nigella Sativa Oil Via Fluidized Bed Coating Technology. Food Bioprocess Technol. 2019;12:1352–1365. doi: 10.1007/s11947-019-02294-y. DOI
Mazaheri Y., Torbati M., Azadmard-Damirchi S., Savage G.P. A Comprehensive Review of the Physicochemical, Quality and Nutritional Properties of Nigella Sativa Oil. Food Rev. Int. 2019;35:342–362. doi: 10.1080/87559129.2018.1563793. DOI
Raharivelomanana P., Ansel J., Lupo E., Mijouin L., Guillot S., Butaud J., Ho R., Lecellier G., Pichon C. Tamanu Oil and Skin Active Properties: From Traditional to Modern Cosmetic Uses. OCL. 2018;25:D504. doi: 10.1051/ocl/2018048. DOI
Shen Y.C., Hung M.C., Wang L.T., Chen C.Y. Inocalophyllins A, B and their Methyl Esters from the Seeds of Calophyllum Inophyllum. Chem. Pharm. Bull. 2003;51:802–806. doi: 10.1248/cpb.51.802. PubMed DOI
Itoigawa M., Ito C., Tan H.T.-W., Kuchide M., Tokuda H., Nishino H., Furukawa H. Cancer Chemopreventive Agents, 4-Phenylcoumarins from Calophyllum Inophyllum. Cancer Lett. 2001;169:15–19. doi: 10.1016/S0304-3835(01)00521-3. PubMed DOI
Bui C., Nguyen B., Trinh D., Vo N. 1077 Anti-Inflammatory and Wound Healing Activities of Calophyllolide Isolated from Calophyllum Inophyllum Linn. J. Investig. Dermatol. 2018;138:S183. doi: 10.1016/j.jid.2018.03.1090. PubMed DOI PMC
Said T., Dutot M., Martin C., Beaudeux J.-L., Boucher C., Enee E., Baudouin C., Warnet J.-M., Rat P. Cytoprotective Effect Against UV-Induced DNA Damage and Oxidative Stress: Role of New Biological UV Filter. Eur. J. Pharm. Sci. 2007;30:203–210. doi: 10.1016/j.ejps.2006.11.001. PubMed DOI
Ixtaina V.Y., Julio L.M., Wagner J.R., Nolasco S.M., Tomás M.C. Physicochemical Characterization and Stability of Chia Oil Rnicroencapsulated with Sodium Caseinate and Lactose by Spray-Drying. Powder Technol. 2015;271:26–34. doi: 10.1016/j.powtec.2014.11.006. DOI
Komaiko J., Sastrosubroto A., McClements D.J. Encapsulation of Omega-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chem. 2016;203:331–339. doi: 10.1016/j.foodchem.2016.02.080. PubMed DOI
Day L., Xu M., Hoobin P., Burgar I., Augustin M.A. Characterisation of Fish Oil Emulsions Stabilised by Sodium Caseinate. Food Chem. 2007;105:469–479. doi: 10.1016/j.foodchem.2007.04.013. DOI
Huck-Iriart C., Pizones Ruiz-Henestrosa V., Candal R., Herrera M. Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower Oil Emulsions. Food Bioprocess Technol. 2013;6:2406–2418. doi: 10.1007/s11947-012-0901-y. DOI
Keogh M.K., O’Kennedy B.T., Kelly J., Auty M.A., Kelly P.M., Fureby A., Haahr A.-M. Stability to Oxidation of Spray-Dried Fish Oil Powder Microencapsulated using Milk Ingredients. J. Food Sci. 2001;66:217–224. doi: 10.1111/j.1365-2621.2001.tb11320.x. DOI
Villiere A., Viau M., Bronnec I., Moreau N., Genot C. Oxidative Stability of Bovine Serum Albumin- and Sodium Caseinate-Stabilized Emulsions Depends on Metal Availability. J. Agric. Food Chem. 2005;53:1514–1520. doi: 10.1021/jf0486951. PubMed DOI
Hebishy E., Buffa M., Juan B., Blasco-Moreno A., Trujillo A. Ultra High-Pressure Homogenized Emulsions Stabilized by Sodium Caseinate: Effects of Protein Concentration and Pressure on Emulsions Structure and Stability. LWT-Food Sci. Technol. 2017;76:57–66. doi: 10.1016/j.lwt.2016.10.045. DOI
Drusch S., Serfert Y., Berger A., Shaikh M.Q., Raetzke K., Zaporojtchenko V., Schwarz K. New Insights into the Microencapsulation Properties of Sodium Caseinate and Hydrolyzed Casein. Food Hydrocoll. 2012;27:332–338. doi: 10.1016/j.foodhyd.2011.10.001. DOI
Amine C., Dreher J., Helgason T., Tadros T. Investigation of Emulsifying Properties and Emulsion Stability of Plant and Milk Proteins using Interfacial Tension and Interfacial Elasticity. Food Hydrocoll. 2014;39:180–186. doi: 10.1016/j.foodhyd.2014.01.001. DOI
Livney Y.D. Milk Proteins as Vehicles for Bioactives. Curr. Opin. Colloid Interface Sci. 2010;15:73–83. doi: 10.1016/j.cocis.2009.11.002. DOI
Nielsen N.S., Jacobsen C. Methods for Reducing Lipid Oxidation in Fish-Oil-Enriched Energy Bars. Int. J. Food Sci. Technol. 2009;44:1536–1546. doi: 10.1111/j.1365-2621.2008.01786.x. DOI
Hu M., McClements D.J., Decker E.A. Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. J. Agric. Food Chem. 2003;51:1696–1700. doi: 10.1021/jf020952j. PubMed DOI
Ansel J., Lupo E., Mijouin L., Guillot S., Butaud J., Ho R., Lecellier G., Raharivelomanana P., Pichon C. Biological Activity of Polynesian Calophyllum Inophyllum Oil Extract on Human Skin Cells. Planta Med. 2016;82:961–966. doi: 10.1055/s-0042-108205. PubMed DOI
Mukhtar H., Qureshi A.S., Anwar F., Mumtaz M.W., Marcu M. Nigella Sativa, L. Seed and Seed Oil: Potential Sources of High-Value Components for Development of Functional Foods and Nutraceuticals/Pharmaceuticals. J. Essent. Oil Res. 2019;31:171–183. doi: 10.1080/10412905.2018.1562388. DOI
Gunstone F.D., Harwood J.L., Dijkstra A.J., editors. The Lipid Handbook. 3rd ed. CRC Press; Boca Raton, FL, USA: 2007.
Crane S., Aurore G., Joseph H., Mouloungui Z., Bourgeois P. Composition of Fatty Acids Triacylglycerols and Unsaponifiable Matter in Calophyllum Calaba, L. Oil Guadeloupe Phytochem. 2005;66:1825–1831. doi: 10.1016/j.phytochem.2005.06.009. PubMed DOI
Ramadan M.F., Mörsel J. Characterization of Phospholipid Composition of Black Cumin (Nigella Sativa, L.) Seed Oil. Food Nahr. 2002;46:240–244. doi: 10.1002/1521-3803(20020701)46:4<240::AID-FOOD240>3.0.CO;2-1. PubMed DOI
Cheikh-Rouhou S., Besbes S., Hentati B., Blecker C., Deroanne C., Attia H. Nigella Sativa, L.: Chemical Composition and Physicochemical Characteristics of Lipid Fraction. Food Chem. 2007;101:673–681. doi: 10.1016/j.foodchem.2006.02.022. DOI
Singh S., Das S.S., Singh G., Schuff C., de Lampasona M.P., Catalán C.A.N. Composition, in Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins obtained from Black Cumin Seeds (Nigella Sativa, L.) BioMed Res. Int. 2014;2014:918209. doi: 10.1155/2014/918209. PubMed DOI PMC
Perrechil F.A., Cunha R.L. Oil-in-Water Emulsions Stabilized by Sodium Caseinate: Influence of pH, High-Pressure Homogenization and Locust Bean Gum Addition. J. Food Eng. 2010;97:441–448. doi: 10.1016/j.jfoodeng.2009.10.041. DOI
Amalia Kartika I., Cerny M., Vandenbossche V., Rigal L., Sablayrolles C., Vialle C., Suparno O., Ariono D., Evon P. Direct Calophyllum Oil Extraction and Resin Separation with a Binary Solvent of N-Hexane and Methanol Mixture. Fuel. 2018;221:159–164. doi: 10.1016/j.fuel.2018.02.080. DOI
Mohammed N.K., Abd Manap M.Y., Tan C.P., Muhialdin B.J., Alhelli A.M., Meor Hussin A.S. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa, L.) Oil. Evid. Based Complement. Altern. Med. eCAM. 2016;2016:6273817. doi: 10.1155/2016/6273817. PubMed DOI PMC
Wooster T.J., Golding M., Sanguansri P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir. 2008;24:12758–12765. doi: 10.1021/la801685v. PubMed DOI
Álvarez Cerimedo M.S., Iriart C.H., Candal R.J., Herrera M.L. Stability of Emulsions Formulated with High Concentrations of Sodium Caseinate and Trehalose. Food Res. Int. 2010;43:1482–1493. doi: 10.1016/j.foodres.2010.04.008. DOI
Lizarraga M.S., Pan L.G., Añon M.C., Santiago L.G. Stability of Concentrated Emulsions Measured by Optical and Rheological Methods. Effect of Processing Conditions-I. Whey Protein Concentrate. Food Hydrocoll. 2008;22:868–878. doi: 10.1016/j.foodhyd.2007.04.012. DOI
Jafari S.M., He Y., Bhandari B. Production of Sub-Micron Emulsions by Ultrasound and Microfluidization Techniques. J. Food Eng. 2007;82:478–488. doi: 10.1016/j.jfoodeng.2007.03.007. DOI
Dickinson E., Golding M. Depletion Flocculation of Emulsions Containing Unadsorbed Sodium Caseinate. Food Hydrocoll. 1997;11:13–18. doi: 10.1016/S0268-005X(97)80005-7. DOI
Montes de Oca-Ávalos J.M., Candal R.J., Herrera M.L. Colloidal Properties of Sodium Caseinate-Stabilized Nanoemulsions Prepared by a Combination of a High-Energy Homogenization and Evaporative Ripening Methods. Food Res. Int. 2017;100:143–150. doi: 10.1016/j.foodres.2017.06.035. PubMed DOI
Srinivasan M., Singh H., Munro P.A. Formation and Stability of Sodium Caseinate Emulsions: Influence of Retorting (121 °C for 15 Min) before or After Emulsification. Food Hydrocoll. 2002;16:153–160. doi: 10.1016/S0268-005X(01)00072-8. DOI
Dickinson E., Radford S.J., Golding M. Stability and Rheology of Emulsions Containing Sodium Caseinate: Combined Effects of Ionic Calcium and Non-Ionic Surfactant. Food Hydrocoll. 2003;17:211–220. doi: 10.1016/S0268-005X(02)00055-3. PubMed DOI
Allen K.E., Dickinson E., Murray B. Acidified Sodium Caseinate Emulsion Foams Containing Liquid Fat: A Comparison with Whipped Cream. LWT-Food Sci. Technol. 2006;39:225–234. doi: 10.1016/j.lwt.2005.02.004. DOI
Barreto P., Roeder J., Crespo J.S., Maciel G.R., Terenzi H., Pires A., Soldi V. Effect of Concentration, Temperature and Plasticizer Content on Rheological Properties of Sodium Caseinate and Sodium Caseinate/Sorbitol Solutions and Glass Transition of their Films. Food Chem. 2003;82:425–431. doi: 10.1016/S0308-8146(03)00006-2. DOI
De Figueiredo Furtado G., Mantovani R.A., Consoli L., Hubinger M.D., da Cunha R.L. Structural and Emulsifying Properties of Sodium Caseinate and Lactoferrin Influenced by Ultrasound Process. Food Hydrocoll. 2017;63:178–188. doi: 10.1016/j.foodhyd.2016.08.038. DOI
Taha A., Hu T., Hu H., Zhang Z., Bakry A.M., Khalifa I., Pan S. Effect of Different Oils and Ultrasound Emulsification Conditions on the Physicochemical Properties of Emulsions Stabilized by Soy Protein Isolate. Ultrason. Sonochem. 2018;49:283–293. doi: 10.1016/j.ultsonch.2018.08.020. PubMed DOI
Liang Y., Gillies G., Patel H., Matia-Merino L., Ye A., Golding M. Physical Stability, Microstructure and Rheology of Sodium-Caseinate-Stabilized Emulsions as Influenced by Protein Concentration and Non-Adsorbing Polysaccharides. Food Hydrocoll. 2014;36:245–255. doi: 10.1016/j.foodhyd.2013.10.006. DOI
Yerramilli M., Ghosh S. Long-Term Stability of Sodium Caseinate-Stabilized Nanoemulsions. J. Food Sci. Technol. 2017;54:82–92. doi: 10.1007/s13197-016-2438-y. PubMed DOI PMC
Dickinson E. Structure Formation in Casein-Based Gels, Foams, and Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2006;288:3–11. doi: 10.1016/j.colsurfa.2006.01.012. DOI
Silva E.K., Gomes M.T.M.S., Hubinger M.D., Cunha R.L., Meireles M.A.A. Ultrasound-Assisted Formation of Annatto Seed Oil Emulsions Stabilized by Biopolymers. Food Hydrocoll. 2015;47:1–13. doi: 10.1016/j.foodhyd.2015.01.001. DOI
Desrumaux A., Marcand J. Formation of Sunflower Oil Emulsions Stabilized by Whey Proteins with High-Pressure Homogenization (Up to 350 MPa): Effect of Pressure on Emulsion Characteristics. Int. J. Food Sci. Technol. 2002;37:263–269. doi: 10.1046/j.1365-2621.2002.00565.x. DOI