Caseinate-Stabilized Emulsions of Black Cumin and Tamanu Oils: Preparation, Characterization and Antibacterial Activity

. 2019 Nov 27 ; 11 (12) : . [epub] 20191127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31783677

Grantová podpora
NPU 1 - LO1504 Ministerstvo Školství, Mládeže a Tělovýchovy

Caseinate-stabilized emulsions of black cumin (Nigella sativa) and tamanu (Calophyllum inophyllum) oils were studied in terms of preparation, characterization, and antibacterial properties. The oils were described while using their basic characteristics, including fatty acid composition and scavenging activity. The oil-in-water (o/w) emulsions containing the studied oils were formulated, and the influence of protein stabilizer (sodium caseinate (CAS), 1-12 wt%), oil contents (5-30 wt%), and emulsification methods (high-shear homogenization vs sonication) on the emulsion properties were investigated. It was observed that, under both preparation methods, emulsions of small, initial droplet sizes were predominantly formed with CAS content that was higher than 7.5 wt%. Sonication was a more efficient emulsification procedure and was afforded emulsions with smaller droplet size throughout the entire used concentration ranges of oils and CAS when compared to high-shear homogenization. At native pH of ~ 6.5, all of the emulsions exhibited negative zeta potential that originated from the presence of caseinate. The antibacterial activities of both oils and their emulsions were investigated with respect to the growth suppression of common spoilage bacteria while using the disk diffusion method. The oils and selected emulsions were proven to act against gram positive strains, mainly against Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus); regrettably, the gram negative species were fully resistant against their action.

Zobrazit více v PubMed

Léguillier T., Lecsö-Bornet M., Lémus C., Rousseau-Ralliard D., Lebouvier N., Hnawia E., Nour M., Aalbersberg W., Ghazi K., Raharivelomanana P., et al. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum Inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLoS ONE. 2015;10:e0138602. doi: 10.1371/journal.pone.0138602. PubMed DOI PMC

Piras A., Rosa A., Marongiu B., Porcedda S., Falconieri D., Dessì M.A., Ozcelik B., Koca U. Chemical Composition and in Vitro Bioactivity of the Volatile and Fixed Oils of Nigella Sativa, L. Extracted by Supercritical Carbon Dioxide. Ind. Crop. Prod. 2013;46:317–323. doi: 10.1016/j.indcrop.2013.02.013. DOI

Amin B., Hosseinzadeh H. Black Cumin (Nigella Sativa) and its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-Inflammatory Effects. Planta Med. 2016;82:8–16. doi: 10.1055/s-0035-1557838. PubMed DOI

Ramadan M., Asker M., Tadros M. Antiradical and Antimicrobial Properties of Cold-Pressed Black Cumin and Cumin Oils. Eur. Food Res. Technol. 2012;234:833–844. doi: 10.1007/s00217-012-1696-9. DOI

Hassanien M.F.R., Assiri A.M.A., Alzohairy A.M., Oraby H.F. Health-Promoting Value and Food Applications of Black Cumin Essential Oil: An Overview. J. Food Sci. Technol. 2015;52:6136–6142. doi: 10.1007/s13197-015-1785-4. PubMed DOI PMC

Bourgou S., Pichette A., Marzouk B., Legault J. Bioactivities of Black Cumin Essential Oil and its Main Terpenes from Tunisia. S. Afr. J. Bot. 2010;76:210–216. doi: 10.1016/j.sajb.2009.10.009. DOI

Mohammed N.K., Tan C.P., Abd Manap M.Y., Muhialdin B.J., Hussin A.S.M. Production of Functional Non-Dairy Creamer using Nigella Sativa Oil Via Fluidized Bed Coating Technology. Food Bioprocess Technol. 2019;12:1352–1365. doi: 10.1007/s11947-019-02294-y. DOI

Mazaheri Y., Torbati M., Azadmard-Damirchi S., Savage G.P. A Comprehensive Review of the Physicochemical, Quality and Nutritional Properties of Nigella Sativa Oil. Food Rev. Int. 2019;35:342–362. doi: 10.1080/87559129.2018.1563793. DOI

Raharivelomanana P., Ansel J., Lupo E., Mijouin L., Guillot S., Butaud J., Ho R., Lecellier G., Pichon C. Tamanu Oil and Skin Active Properties: From Traditional to Modern Cosmetic Uses. OCL. 2018;25:D504. doi: 10.1051/ocl/2018048. DOI

Shen Y.C., Hung M.C., Wang L.T., Chen C.Y. Inocalophyllins A, B and their Methyl Esters from the Seeds of Calophyllum Inophyllum. Chem. Pharm. Bull. 2003;51:802–806. doi: 10.1248/cpb.51.802. PubMed DOI

Itoigawa M., Ito C., Tan H.T.-W., Kuchide M., Tokuda H., Nishino H., Furukawa H. Cancer Chemopreventive Agents, 4-Phenylcoumarins from Calophyllum Inophyllum. Cancer Lett. 2001;169:15–19. doi: 10.1016/S0304-3835(01)00521-3. PubMed DOI

Bui C., Nguyen B., Trinh D., Vo N. 1077 Anti-Inflammatory and Wound Healing Activities of Calophyllolide Isolated from Calophyllum Inophyllum Linn. J. Investig. Dermatol. 2018;138:S183. doi: 10.1016/j.jid.2018.03.1090. PubMed DOI PMC

Said T., Dutot M., Martin C., Beaudeux J.-L., Boucher C., Enee E., Baudouin C., Warnet J.-M., Rat P. Cytoprotective Effect Against UV-Induced DNA Damage and Oxidative Stress: Role of New Biological UV Filter. Eur. J. Pharm. Sci. 2007;30:203–210. doi: 10.1016/j.ejps.2006.11.001. PubMed DOI

Ixtaina V.Y., Julio L.M., Wagner J.R., Nolasco S.M., Tomás M.C. Physicochemical Characterization and Stability of Chia Oil Rnicroencapsulated with Sodium Caseinate and Lactose by Spray-Drying. Powder Technol. 2015;271:26–34. doi: 10.1016/j.powtec.2014.11.006. DOI

Komaiko J., Sastrosubroto A., McClements D.J. Encapsulation of Omega-3 Fatty Acids in Nanoemulsion-Based Delivery Systems Fabricated from Natural Emulsifiers: Sunflower Phospholipids. Food Chem. 2016;203:331–339. doi: 10.1016/j.foodchem.2016.02.080. PubMed DOI

Day L., Xu M., Hoobin P., Burgar I., Augustin M.A. Characterisation of Fish Oil Emulsions Stabilised by Sodium Caseinate. Food Chem. 2007;105:469–479. doi: 10.1016/j.foodchem.2007.04.013. DOI

Huck-Iriart C., Pizones Ruiz-Henestrosa V., Candal R., Herrera M. Effect of Aqueous Phase Composition on Stability of Sodium Caseinate/Sunflower Oil Emulsions. Food Bioprocess Technol. 2013;6:2406–2418. doi: 10.1007/s11947-012-0901-y. DOI

Keogh M.K., O’Kennedy B.T., Kelly J., Auty M.A., Kelly P.M., Fureby A., Haahr A.-M. Stability to Oxidation of Spray-Dried Fish Oil Powder Microencapsulated using Milk Ingredients. J. Food Sci. 2001;66:217–224. doi: 10.1111/j.1365-2621.2001.tb11320.x. DOI

Villiere A., Viau M., Bronnec I., Moreau N., Genot C. Oxidative Stability of Bovine Serum Albumin- and Sodium Caseinate-Stabilized Emulsions Depends on Metal Availability. J. Agric. Food Chem. 2005;53:1514–1520. doi: 10.1021/jf0486951. PubMed DOI

Hebishy E., Buffa M., Juan B., Blasco-Moreno A., Trujillo A. Ultra High-Pressure Homogenized Emulsions Stabilized by Sodium Caseinate: Effects of Protein Concentration and Pressure on Emulsions Structure and Stability. LWT-Food Sci. Technol. 2017;76:57–66. doi: 10.1016/j.lwt.2016.10.045. DOI

Drusch S., Serfert Y., Berger A., Shaikh M.Q., Raetzke K., Zaporojtchenko V., Schwarz K. New Insights into the Microencapsulation Properties of Sodium Caseinate and Hydrolyzed Casein. Food Hydrocoll. 2012;27:332–338. doi: 10.1016/j.foodhyd.2011.10.001. DOI

Amine C., Dreher J., Helgason T., Tadros T. Investigation of Emulsifying Properties and Emulsion Stability of Plant and Milk Proteins using Interfacial Tension and Interfacial Elasticity. Food Hydrocoll. 2014;39:180–186. doi: 10.1016/j.foodhyd.2014.01.001. DOI

Livney Y.D. Milk Proteins as Vehicles for Bioactives. Curr. Opin. Colloid Interface Sci. 2010;15:73–83. doi: 10.1016/j.cocis.2009.11.002. DOI

Nielsen N.S., Jacobsen C. Methods for Reducing Lipid Oxidation in Fish-Oil-Enriched Energy Bars. Int. J. Food Sci. Technol. 2009;44:1536–1546. doi: 10.1111/j.1365-2621.2008.01786.x. DOI

Hu M., McClements D.J., Decker E.A. Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. J. Agric. Food Chem. 2003;51:1696–1700. doi: 10.1021/jf020952j. PubMed DOI

Ansel J., Lupo E., Mijouin L., Guillot S., Butaud J., Ho R., Lecellier G., Raharivelomanana P., Pichon C. Biological Activity of Polynesian Calophyllum Inophyllum Oil Extract on Human Skin Cells. Planta Med. 2016;82:961–966. doi: 10.1055/s-0042-108205. PubMed DOI

Mukhtar H., Qureshi A.S., Anwar F., Mumtaz M.W., Marcu M. Nigella Sativa, L. Seed and Seed Oil: Potential Sources of High-Value Components for Development of Functional Foods and Nutraceuticals/Pharmaceuticals. J. Essent. Oil Res. 2019;31:171–183. doi: 10.1080/10412905.2018.1562388. DOI

Gunstone F.D., Harwood J.L., Dijkstra A.J., editors. The Lipid Handbook. 3rd ed. CRC Press; Boca Raton, FL, USA: 2007.

Crane S., Aurore G., Joseph H., Mouloungui Z., Bourgeois P. Composition of Fatty Acids Triacylglycerols and Unsaponifiable Matter in Calophyllum Calaba, L. Oil Guadeloupe Phytochem. 2005;66:1825–1831. doi: 10.1016/j.phytochem.2005.06.009. PubMed DOI

Ramadan M.F., Mörsel J. Characterization of Phospholipid Composition of Black Cumin (Nigella Sativa, L.) Seed Oil. Food Nahr. 2002;46:240–244. doi: 10.1002/1521-3803(20020701)46:4<240::AID-FOOD240>3.0.CO;2-1. PubMed DOI

Cheikh-Rouhou S., Besbes S., Hentati B., Blecker C., Deroanne C., Attia H. Nigella Sativa, L.: Chemical Composition and Physicochemical Characteristics of Lipid Fraction. Food Chem. 2007;101:673–681. doi: 10.1016/j.foodchem.2006.02.022. DOI

Singh S., Das S.S., Singh G., Schuff C., de Lampasona M.P., Catalán C.A.N. Composition, in Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins obtained from Black Cumin Seeds (Nigella Sativa, L.) BioMed Res. Int. 2014;2014:918209. doi: 10.1155/2014/918209. PubMed DOI PMC

Perrechil F.A., Cunha R.L. Oil-in-Water Emulsions Stabilized by Sodium Caseinate: Influence of pH, High-Pressure Homogenization and Locust Bean Gum Addition. J. Food Eng. 2010;97:441–448. doi: 10.1016/j.jfoodeng.2009.10.041. DOI

Amalia Kartika I., Cerny M., Vandenbossche V., Rigal L., Sablayrolles C., Vialle C., Suparno O., Ariono D., Evon P. Direct Calophyllum Oil Extraction and Resin Separation with a Binary Solvent of N-Hexane and Methanol Mixture. Fuel. 2018;221:159–164. doi: 10.1016/j.fuel.2018.02.080. DOI

Mohammed N.K., Abd Manap M.Y., Tan C.P., Muhialdin B.J., Alhelli A.M., Meor Hussin A.S. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa, L.) Oil. Evid. Based Complement. Altern. Med. eCAM. 2016;2016:6273817. doi: 10.1155/2016/6273817. PubMed DOI PMC

Wooster T.J., Golding M., Sanguansri P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir. 2008;24:12758–12765. doi: 10.1021/la801685v. PubMed DOI

Álvarez Cerimedo M.S., Iriart C.H., Candal R.J., Herrera M.L. Stability of Emulsions Formulated with High Concentrations of Sodium Caseinate and Trehalose. Food Res. Int. 2010;43:1482–1493. doi: 10.1016/j.foodres.2010.04.008. DOI

Lizarraga M.S., Pan L.G., Añon M.C., Santiago L.G. Stability of Concentrated Emulsions Measured by Optical and Rheological Methods. Effect of Processing Conditions-I. Whey Protein Concentrate. Food Hydrocoll. 2008;22:868–878. doi: 10.1016/j.foodhyd.2007.04.012. DOI

Jafari S.M., He Y., Bhandari B. Production of Sub-Micron Emulsions by Ultrasound and Microfluidization Techniques. J. Food Eng. 2007;82:478–488. doi: 10.1016/j.jfoodeng.2007.03.007. DOI

Dickinson E., Golding M. Depletion Flocculation of Emulsions Containing Unadsorbed Sodium Caseinate. Food Hydrocoll. 1997;11:13–18. doi: 10.1016/S0268-005X(97)80005-7. DOI

Montes de Oca-Ávalos J.M., Candal R.J., Herrera M.L. Colloidal Properties of Sodium Caseinate-Stabilized Nanoemulsions Prepared by a Combination of a High-Energy Homogenization and Evaporative Ripening Methods. Food Res. Int. 2017;100:143–150. doi: 10.1016/j.foodres.2017.06.035. PubMed DOI

Srinivasan M., Singh H., Munro P.A. Formation and Stability of Sodium Caseinate Emulsions: Influence of Retorting (121 °C for 15 Min) before or After Emulsification. Food Hydrocoll. 2002;16:153–160. doi: 10.1016/S0268-005X(01)00072-8. DOI

Dickinson E., Radford S.J., Golding M. Stability and Rheology of Emulsions Containing Sodium Caseinate: Combined Effects of Ionic Calcium and Non-Ionic Surfactant. Food Hydrocoll. 2003;17:211–220. doi: 10.1016/S0268-005X(02)00055-3. PubMed DOI

Allen K.E., Dickinson E., Murray B. Acidified Sodium Caseinate Emulsion Foams Containing Liquid Fat: A Comparison with Whipped Cream. LWT-Food Sci. Technol. 2006;39:225–234. doi: 10.1016/j.lwt.2005.02.004. DOI

Barreto P., Roeder J., Crespo J.S., Maciel G.R., Terenzi H., Pires A., Soldi V. Effect of Concentration, Temperature and Plasticizer Content on Rheological Properties of Sodium Caseinate and Sodium Caseinate/Sorbitol Solutions and Glass Transition of their Films. Food Chem. 2003;82:425–431. doi: 10.1016/S0308-8146(03)00006-2. DOI

De Figueiredo Furtado G., Mantovani R.A., Consoli L., Hubinger M.D., da Cunha R.L. Structural and Emulsifying Properties of Sodium Caseinate and Lactoferrin Influenced by Ultrasound Process. Food Hydrocoll. 2017;63:178–188. doi: 10.1016/j.foodhyd.2016.08.038. DOI

Taha A., Hu T., Hu H., Zhang Z., Bakry A.M., Khalifa I., Pan S. Effect of Different Oils and Ultrasound Emulsification Conditions on the Physicochemical Properties of Emulsions Stabilized by Soy Protein Isolate. Ultrason. Sonochem. 2018;49:283–293. doi: 10.1016/j.ultsonch.2018.08.020. PubMed DOI

Liang Y., Gillies G., Patel H., Matia-Merino L., Ye A., Golding M. Physical Stability, Microstructure and Rheology of Sodium-Caseinate-Stabilized Emulsions as Influenced by Protein Concentration and Non-Adsorbing Polysaccharides. Food Hydrocoll. 2014;36:245–255. doi: 10.1016/j.foodhyd.2013.10.006. DOI

Yerramilli M., Ghosh S. Long-Term Stability of Sodium Caseinate-Stabilized Nanoemulsions. J. Food Sci. Technol. 2017;54:82–92. doi: 10.1007/s13197-016-2438-y. PubMed DOI PMC

Dickinson E. Structure Formation in Casein-Based Gels, Foams, and Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2006;288:3–11. doi: 10.1016/j.colsurfa.2006.01.012. DOI

Silva E.K., Gomes M.T.M.S., Hubinger M.D., Cunha R.L., Meireles M.A.A. Ultrasound-Assisted Formation of Annatto Seed Oil Emulsions Stabilized by Biopolymers. Food Hydrocoll. 2015;47:1–13. doi: 10.1016/j.foodhyd.2015.01.001. DOI

Desrumaux A., Marcand J. Formation of Sunflower Oil Emulsions Stabilized by Whey Proteins with High-Pressure Homogenization (Up to 350 MPa): Effect of Pressure on Emulsion Characteristics. Int. J. Food Sci. Technol. 2002;37:263–269. doi: 10.1046/j.1365-2621.2002.00565.x. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...