Whole brain apparent diffusion coefficient measurements correlate with survival in glioblastoma patients
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
NV18-04-00457
Ministerstvo Zdravotnictví Ceské Republiky
DRO (NHH, 00023884) IG174301
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31797235
PubMed Central
PMC6938471
DOI
10.1007/s11060-019-03357-y
PII: 10.1007/s11060-019-03357-y
Knihovny.cz E-resources
- Keywords
- Apparent diffusion coefficient, Diffusion-weighted imaging, Glioblastoma, Histogram analyses, Magnetic resonance imaging,
- MeSH
- Antineoplastic Agents, Alkylating therapeutic use MeSH
- Chemoradiotherapy mortality MeSH
- Diffusion Magnetic Resonance Imaging methods MeSH
- Glioblastoma mortality pathology therapy MeSH
- Combined Modality Therapy MeSH
- Humans MeSH
- Survival Rate MeSH
- Brain Neoplasms mortality pathology therapy MeSH
- Follow-Up Studies MeSH
- Image Processing, Computer-Assisted methods MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Retrospective Studies MeSH
- Temozolomide therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antineoplastic Agents, Alkylating MeSH
- Temozolomide MeSH
INTRODUCTION: Glioblastoma (GBM) is the most common malignant primary brain tumor, and methods to improve the early detection of disease progression and evaluate treatment response are highly desirable. We therefore explored changes in whole-brain apparent diffusion coefficient (ADC) values with respect to survival (progression-free [PFS], overall [OS]) in a cohort of GBM patients followed at regular intervals until disease progression. METHODS: A total of 43 subjects met inclusion criteria and were analyzed retrospectively. Histogram data were extracted from standardized whole-brain ADC maps including skewness, kurtosis, entropy, median, mode, 15th percentile (p15) and 85th percentile (p85) values, and linear regression slopes (metrics versus time) were fitted. Regression slope directionality (positive/negative) was subjected to univariate Cox regression. The final model was determined by aLASSO on metrics above threshold. RESULTS: Skewness, kurtosis, median, p15 and p85 were all below threshold for both PFS and OS and were analyzed further. Median regression slope directionality best modeled PFS (p = 0.001; HR 3.3; 95% CI 1.6-6.7), while p85 was selected for OS (p = 0.002; HR 0.29; 95% CI 0.13-0.64). CONCLUSIONS: Our data show tantalizing potential in the use of whole-brain ADC measurements in the follow up of GBM patients, specifically serial median ADC values which correlated with PFS, and serial p85 values which correlated with OS. Whole-brain ADC measurements are fast and easy to perform, and free of ROI-placement bias.
See more in PubMed
Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications; 2017. PubMed
Dehdashti AR, Hegi ME, Regli L, et al. New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg Focus. 2006;20:E6. doi: 10.3171/foc.2006.20.4.3. PubMed DOI
Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomIDe vs maintenance temozolomIDe alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–2316. doi: 10.1001/jama.2017.18718. PubMed DOI PMC
Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13. doi: 10.1016/j.jocn.2018.05.002. PubMed DOI
Kondo M, Uchiyama Y. Apparent diffusion coefficient histogram analysis for prediction of prognosis in glioblastoma. J Neuroradiol. 2018;45:236–241. doi: 10.1016/j.neurad.2017.11.011. PubMed DOI
Mehrabian H, Lam WW, Myrehaug S, et al. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter. J Neurooncol. 2018;139:97–106. doi: 10.1007/s11060-018-2846-0. PubMed DOI
Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Lu W, Zhang HH. Variable selection for proportional odds model. Stat Med. 2007;26:3771–3781. doi: 10.1002/sim.2833. PubMed DOI
Khalifa J, Tensaouti F, Lotterie J-A, et al. Do perfusion and diffusion MRI predict glioblastoma relapse sites following chemoradiation? J Neurooncol. 2016;130:181–192. doi: 10.1007/s11060-016-2232-8. PubMed DOI
Kong Z, Yan C, Zhu R, et al. Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. Neuroimage Clin. 2018;20:51–60. doi: 10.1016/j.nicl.2018.07.001. PubMed DOI PMC
Rulseh AM, Keller J, Klener J, et al. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol. 2012;10:220. doi: 10.1186/1477-7819-10-220. PubMed DOI PMC
Vymazal J, Zacek R, Sroubek J, et al. Quantitative MR measurements in glioblastoma patients: difference in mean diffusivity between Optune patients and patients with only standard treatment. Neuro Oncol. 2017;19(Suppl 6):vi143. doi: 10.1093/neuonc/nox168.584. DOI
Sahm F, Capper D, Jeibmann A, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69:523–526. doi: 10.1001/archneurol.2011.2910. PubMed DOI
Cordova JS, Shu H-KG, Liang Z, et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol. 2016;18:1180–1189. doi: 10.1093/neuonc/now036. PubMed DOI PMC
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–1972. doi: 10.1200/JCO.2009.26.3541. PubMed DOI
Macdonald DR, Cascino TL, Schold SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. JCO. 1990;8:1277–1280. doi: 10.1200/JCO.1990.8.7.1277. PubMed DOI
Schmeel FC. Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias? Eur Radiol. 2019;29:2243–2245. doi: 10.1007/s00330-018-5866-4. PubMed DOI