• This record comes from PubMed

Whole brain apparent diffusion coefficient measurements correlate with survival in glioblastoma patients

. 2020 Jan ; 146 (1) : 157-162. [epub] 20191203

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
NV18-04-00457 Ministerstvo Zdravotnictví Ceské Republiky
DRO (NHH, 00023884) IG174301 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 31797235
PubMed Central PMC6938471
DOI 10.1007/s11060-019-03357-y
PII: 10.1007/s11060-019-03357-y
Knihovny.cz E-resources

INTRODUCTION: Glioblastoma (GBM) is the most common malignant primary brain tumor, and methods to improve the early detection of disease progression and evaluate treatment response are highly desirable. We therefore explored changes in whole-brain apparent diffusion coefficient (ADC) values with respect to survival (progression-free [PFS], overall [OS]) in a cohort of GBM patients followed at regular intervals until disease progression. METHODS: A total of 43 subjects met inclusion criteria and were analyzed retrospectively. Histogram data were extracted from standardized whole-brain ADC maps including skewness, kurtosis, entropy, median, mode, 15th percentile (p15) and 85th percentile (p85) values, and linear regression slopes (metrics versus time) were fitted. Regression slope directionality (positive/negative) was subjected to univariate Cox regression. The final model was determined by aLASSO on metrics above threshold. RESULTS: Skewness, kurtosis, median, p15 and p85 were all below threshold for both PFS and OS and were analyzed further. Median regression slope directionality best modeled PFS (p = 0.001; HR 3.3; 95% CI 1.6-6.7), while p85 was selected for OS (p = 0.002; HR 0.29; 95% CI 0.13-0.64). CONCLUSIONS: Our data show tantalizing potential in the use of whole-brain ADC measurements in the follow up of GBM patients, specifically serial median ADC values which correlated with PFS, and serial p85 values which correlated with OS. Whole-brain ADC measurements are fast and easy to perform, and free of ROI-placement bias.

See more in PubMed

Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications; 2017. PubMed

Dehdashti AR, Hegi ME, Regli L, et al. New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg Focus. 2006;20:E6. doi: 10.3171/foc.2006.20.4.3. PubMed DOI

Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomIDe vs maintenance temozolomIDe alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–2316. doi: 10.1001/jama.2017.18718. PubMed DOI PMC

Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13. doi: 10.1016/j.jocn.2018.05.002. PubMed DOI

Kondo M, Uchiyama Y. Apparent diffusion coefficient histogram analysis for prediction of prognosis in glioblastoma. J Neuroradiol. 2018;45:236–241. doi: 10.1016/j.neurad.2017.11.011. PubMed DOI

Mehrabian H, Lam WW, Myrehaug S, et al. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter. J Neurooncol. 2018;139:97–106. doi: 10.1007/s11060-018-2846-0. PubMed DOI

Jenkinson M, Beckmann CF, Behrens TEJ, et al. FSL Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI

Lu W, Zhang HH. Variable selection for proportional odds model. Stat Med. 2007;26:3771–3781. doi: 10.1002/sim.2833. PubMed DOI

Khalifa J, Tensaouti F, Lotterie J-A, et al. Do perfusion and diffusion MRI predict glioblastoma relapse sites following chemoradiation? J Neurooncol. 2016;130:181–192. doi: 10.1007/s11060-016-2232-8. PubMed DOI

Kong Z, Yan C, Zhu R, et al. Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas. Neuroimage Clin. 2018;20:51–60. doi: 10.1016/j.nicl.2018.07.001. PubMed DOI PMC

Rulseh AM, Keller J, Klener J, et al. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol. 2012;10:220. doi: 10.1186/1477-7819-10-220. PubMed DOI PMC

Vymazal J, Zacek R, Sroubek J, et al. Quantitative MR measurements in glioblastoma patients: difference in mean diffusivity between Optune patients and patients with only standard treatment. Neuro Oncol. 2017;19(Suppl 6):vi143. doi: 10.1093/neuonc/nox168.584. DOI

Sahm F, Capper D, Jeibmann A, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69:523–526. doi: 10.1001/archneurol.2011.2910. PubMed DOI

Cordova JS, Shu H-KG, Liang Z, et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro Oncol. 2016;18:1180–1189. doi: 10.1093/neuonc/now036. PubMed DOI PMC

Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–1972. doi: 10.1200/JCO.2009.26.3541. PubMed DOI

Macdonald DR, Cascino TL, Schold SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. JCO. 1990;8:1277–1280. doi: 10.1200/JCO.1990.8.7.1277. PubMed DOI

Schmeel FC. Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias? Eur Radiol. 2019;29:2243–2245. doi: 10.1007/s00330-018-5866-4. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...