Critical Assessment of Techniques for the Description of the Phase Composition of Advanced High-Strength Steels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-22586S
Grantová Agentura České Republiky
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31817271
PubMed Central
PMC6947144
DOI
10.3390/ma12244033
PII: ma12244033
Knihovny.cz E-zdroje
- Klíčová slova
- etching agents, high strength steels, microstructure,
- Publikační typ
- časopisecké články MeSH
The phase composition and portion of individual phases in advanced high-strength steels (AHSS) CP1000 and DP1000 was studied by complementary microscopic and diffraction techniques. CP1000 and DP1000 steel grades have a high strength-to-density ratio and they are used in many applications in the automotive industry. The microstructure of the CP1000 "complex phase" steel consists of ferrite, bainite, martensite and a small amount of retained austenite. DP1000 is a dual phase steel, which has a structure of a ferritic matrix with islands of martensite and a minor amount of retained austenite. The influence of selected etchants (Nital, LePera, Beraha I, Nital followed by metabisulfite, Nital followed by LePera, and Nital followed by Beraha I) on the microstructure image is described. X-ray diffraction, neutron diffraction and light optical, scanning and transmission electron microscopy were used in this work for advanced characterization of the microstructure and phase composition. The information provided by each technique is critically compared.
European Spallation Source ERIC 222 70 Lund Sweden
Nuclear Physics Institute Czech Academy of Sciences 250 68 Řež Czech Republic
Zobrazit více v PubMed
Rehrl J., Mraczek K., Pichler A., Werner E. Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests. Mater. Sci. Eng. A. 2014;590:360–367. doi: 10.1016/j.msea.2013.10.044. DOI
Rehrl J., Mraczek K., Pichler A., Werner E. The Impact of Nb, Ti, Zr, B, V, and Mo on the Hydrogen Diffusion in Four Different AHSS/UHSS Microstructures. Steel Res. Int. 2014;85:336–346. doi: 10.1002/srin.201300087. DOI
Dias E., Horimoto L., dos Santos Pereira M. Materials Science Forum. Volumes 775–776. Trans Tech Publication; Zurich, Switzerland: 2014. Microstructural Characterization of CP Steel Used in Automotive Industry; pp. 141–145. DOI
Pathak N., Butcher C., Worswick M. Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet. J. Mater. Eng. Perform. 2016;25:4919–4932. doi: 10.1007/s11665-016-2316-9. DOI
Pouranvari M., Marashi S.P.H. Critical review of automotive steels spot welding: Process, structure and properties. Sci. Technol. Weld. Join. 2013;18:361–403. doi: 10.1179/1362171813Y.0000000120. DOI
Morawiec M., Różański M., Grajcar A., Stano S. Effect of dual beam laser welding on microstructure–property relationships of hot-rolled complex phase steel sheets. Arch. Civ. Mech. Eng. 2017;17:145–153. doi: 10.1016/j.acme.2016.09.007. DOI
Das H., Mondal M., Hong S.-T., Lim Y., Lee K.-J. Comparison of microstructural and mechanical properties of friction stir spot welded ultra-high strength dual phase and complex phase steels. Mater. Charact. 2018;139:428–436. doi: 10.1016/j.matchar.2018.03.022. DOI
Ma C., Chen D.L., Bhole S.D., Boudreau G., Lee A., Biro E. Microstructure and fracture characteristics of spot-welded DP600 steel. Mater. Sci. Eng. A. 2008;485:334–346. doi: 10.1016/j.msea.2007.08.010. DOI
Khan M.S., Bhole S.D., Chen D.L., Biro E., Boudreau G., van Deventer J. Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels. Sci. Technol. Weld. Join. 2009;14:616–625. doi: 10.1179/136217109X12464549883295. DOI
Kuziak R., Kawalla R., Waengler S. Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 2008;8:103–117. doi: 10.1016/S1644-9665(12)60197-6. DOI
Rudomilova D., Prošek T., Luckeneder G. Techniques for investigation of hydrogen embrittlement of advanced high strength steels. Corros. Rev. 2018;36:413. doi: 10.1515/corrrev-2017-0106. DOI
Rudomilova D., Petrek T., Prošek T., Šefl V., Duchaczek H., Zwettler F., Muhr A., Luckeneder G. Comparative study of devices for hydrogen permeation measurements. Mater. Corros. 2018;69:1398–1402. doi: 10.1002/maco.201810134. DOI
Zhao J.J., He Y.L., Zhu N.Q., Zhang M., Li L. Thermodynamic Calculation and Experimental Study on Complex Phase Steel. Adv. Mater. Res. 2013;716:349–354. doi: 10.4028/www.scientific.net/AMR.716.349. DOI
Efthymiadis P., Hazra S., Clough A., Lakshmi R., Alamoudi A., Dashwood R., Shollock B. Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations. Mater. Sci. Eng. A. 2017;701:174–186. doi: 10.1016/j.msea.2017.06.056. DOI
Song R., Fonstein N., Jun H.J., Pottore N., Bhattacharya D., Jansto S. Effects of Nb on Microstructural Evolution and Mechanical Properties of Low-Carbon Cold-Rolled Dual-Phase Steels. Metallogr. Microstruct. Anal. 2014;3:174–184. doi: 10.1007/s13632-014-0133-9. DOI
Complex Phase Steels. [(accessed on 22 November 2019)]; Available online: https://automotive.arcelormittal.com/products/flat/first_gen_AHSS/CP; https://www.tatasteeleurope.com/static_files/Downloads/Automotive/Data%20Sheets/Tata%20Steel%20AM%20-%20CR%20DP1000-GI%20-%20data%20sheet.EN.pdf.
Hairer F., Karelova A., Krempaszky C., Werner E., Hebesberger T., Pichler A. Influence of heat treatment on the microstructure and hardness of a low alloyed complex phase steel; Proceedings of the International Doctoral Seminar; Smolenice, Slovakia. 17–19 May 2009.
Scott H., Sidhu G., Fazeli F., Pilkey A.K., Boyd J.D. Microstructural evolution of a hot-rolled microalloyed complex phase steel. Can. Metall. Q. 2017;56:67–75. doi: 10.1080/00084433.2016.1252555. DOI
Mohrbacher H. Effects of niobium in galvanized advanced high strength steels for automotive applications; Proceedings of the Galvatech 2007; Osaka, Japan. 18–22 November 2007.
Dutta T., Dey S., Datta S., Das D. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput. Mater. Sci. 2019;157:6–16. doi: 10.1016/j.commatsci.2018.10.020. DOI
Matsuoka T., Yamamori K.J.M.T.A. Metallurgical aspects in cold rolled high strength steel sheets. Metall. Trans. A. 1975;6:1613. doi: 10.1007/BF02641975. DOI
Barbé L., Verbeken K. Microstructural characterization of dual phase steels by means of electron microscopy; Proceedings of the 15th International conference on the Texture of Materials (ICOTOM 15); Pittsburgh, PA, USA. 1–6 June 2008; pp. 71–78.
Kuang S., Kang Y.-L., Yu H., Liu R.-d. Effect of continuous annealing parameters on the mechanical properties and microstructures of a cold rolled dual phase steel. Int. J. Miner. Metall. Mater. 2009;16:159–164. doi: 10.1016/S1674-4799(09)60027-3. DOI
Kumar A., Singh S.B., Ray K.K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater. Sci. Eng. A. 2008;474:270–282. doi: 10.1016/j.msea.2007.05.007. DOI
Sun S., Pugh M. Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Mater. Sci. Eng. A. 2002;335:298–308. doi: 10.1016/S0921-5093(01)01942-6. DOI
Davies R.G. Influence of martensite composition and content on the properties of dual phase steels. Metall. Trans. A. 1978;9:671–679. doi: 10.1007/BF02659924. DOI
Bahrami A., Mousavi Anijdan S.H., Ekrami A. Prediction of mechanical properties of DP steels using neural network model. J. Alloy. Compd. 2005;392:177–182. doi: 10.1016/j.jallcom.2004.09.014. DOI
Xia M., Biro E., Tian Z., Zhou Y.N. Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steels. ISIJ Int. 2008;48:809–814. doi: 10.2355/isijinternational.48.809. DOI
Pouranvari M., Marashi S.P.H. Key factors influencing mechanical performance of dual phase steel resistance spot welds. Sci. Technol. Weld. Join. 2010;15:149–155. doi: 10.1179/136217109X12590746472535. DOI
Chen D.L., Wang Z.G., Jiang X.X., Ai S.H., Shih C.H. The dependence of near-threshold fatigue crack growth on microstructure and environment in dual-phase steels. Mater. Sci. Eng. A. 1989;108:141–151. doi: 10.1016/0921-5093(89)90415-2. DOI
Li X., Ramazani A., Prahl U., Bleck W. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements. Mater. Charact. 2018;142:179–186. doi: 10.1016/j.matchar.2018.05.038. DOI
Bayram A., Uǧuz A., Ula M. Effects of Microstructure and Notches on the Mechanical Properties of Dual-Phase Steels. Mater. Charact. 1999;43:259–269. doi: 10.1016/S1044-5803(99)00044-3. DOI
Nowell M., Wright S., Carpenter J. Differentiating Ferrite and Martensite in Steel Microstructures Using Electron Backscatter Diffraction; Proceedings of the Materials Science and Technology Conference and Exhibition 2009, MS and T’09; Pittsburgh, PA, USA. 25–29 October 2009.
Shui C.K., Reynolds W.T., Shiflet G.J., Aaronson H.I. A comparison of etchants for quantitative metallography of bainite and martensite microstructures in Fe-C-Mo alloys. Metallography. 1988;21:91–102. doi: 10.1016/0026-0800(88)90039-0. DOI
Zakerinia H., Kermanpur A., Najafizadeh A. Color metallography; a suitable method for characterization of martensite and bainite in multiphase steels. Int. J. Iron Steel Soc. Iran. 2009;6:14–18.
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Caballero F.G., Bhadeshia H.K.D.H., Mawella K.J.A., Jones D.G., Brown P. Very strong low temperature bainite. Mater. Sci. Technol. 2002;18:279–284. doi: 10.1179/026708301225000725. DOI
Bhadeshia H.K.D.H. The bainite transformation: Unresolved issues. Mater. Sci. Eng. A. 1999;273:58–66. doi: 10.1016/S0921-5093(99)00289-0. DOI
Chang L.C., Bhadeshia H.K.D.H. Austenite films in bainitic microstructures. Mater. Sci. Technol. 1995;11:874–882. doi: 10.1179/mst.1995.11.9.874. DOI
Wang C., Wang M., Shi J., Hui W., Dong H. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr. Mater. 2008;58:492–495. doi: 10.1016/j.scriptamat.2007.10.053. DOI
Sarwar M., Priestner R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 1996;31:2091–2095. doi: 10.1007/BF00356631. DOI
Son Y.I., Lee Y.K., Park K.-T., Lee C.S., Shin D.H. Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties. Acta Mater. 2005;53:3125–3134. doi: 10.1016/j.actamat.2005.02.015. DOI
Sato K., Sueyoshi H., Yamada K. Characterization of complex phase steel using backscattered electron images with controlled collection angles. Microscopy. 2015;64:297–304. doi: 10.1093/jmicro/dfv022. PubMed DOI
Salinas A., Artigas A., Perez-Ipiña J., Castro-Cerda F., Garza-Montes-de-Oca N., Colás R., Petrov R., Monsalve A. Effects of Heat Treatment on Morphology, Texture, and Mechanical Properties of a MnSiAl Multiphase Steel with TRIP Behavior. Metals. 2018;8:1021. doi: 10.3390/met8121021. DOI
Hairer F., Karelová A., Krempaszky C., Werner E., Hebesberger T., Pichler A. Etching Techniques for the Microstructural Characterization of Complex Phase Steels by Light Microscopy. [(accessed on 3 November 2019)];2008 Available online: https://www.mtf.stuba.sk/buxus/docs/internetovy_casopis/2008/4mimorc/hairer.pdf.
Li Y.J., Mao Q.J., Kang J., Wang X.H., Yuan G., Wang G.D. Determination of retained austenite using CCE model accounting for isothermal transformation in a low density quenched and partitioned steel. Mater. Lett. 2019;239:90–93. doi: 10.1016/j.matlet.2018.12.076. DOI
Hossain R., Pahlevani F., Sahajwalla V. Stability of retained austenite in high carbon steel—Effect of post-tempering heat treatment. Mater. Charact. 2019;149:239–247. doi: 10.1016/j.matchar.2019.01.034. DOI
Chen Z., Gu J., Han L. Decomposition characteristic of austenite retained in GCr15 bearing steel modified by addition of 1.3wt.% silicon during tempering. J. Mater. Res. Technol. 2019;8:157–166. doi: 10.1016/j.jmrt.2017.08.012. DOI