Rapidly Solidified Aluminium Alloy Composite with Nickel Prepared by Powder Metallurgy: Microstructure and Self-Healing Behaviour
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GJ17-25618Y
Grantová Agentura České Republiky
PubMed
31847182
PubMed Central
PMC6947238
DOI
10.3390/ma12244193
PII: ma12244193
Knihovny.cz E-zdroje
- Klíčová slova
- aluminium alloy, microstructure, self-healing,
- Publikační typ
- časopisecké články MeSH
Composite material prepared by spark plasma sintering (SPS) from a powder mixture of AlCrFeSi rapidly solidified alloy and 5 wt. % of Ni particles was studied in this work. It was proven that during SPS compaction at 500 °C, no intermetallic phases formed on the surface of Ni particles. The material exhibited sufficient mechanical properties obtained by tensile testing (ultimate tensile stress of 203 ± 4 MPa, ductility of 0.8% and 0.2% offset yield strength of 156 ± 2 MPa). Tensile samples were pre-stressed to 180 MPa and annealed at 450 and 550 °C for 1 h. Annealing at 450 °C did not lead to any recovery of the material. Annealing at 550 °C caused the full recovery of 0.2% offset yield strength, while the ductility was decreased. The self-healing behaviour originates from the growth of intermetallic phases between the Ni particle and the Al matrix. The sequence of NiAl, Ni2Al3 and NiAl3 intermetallic phases formation was observed. In particular, the morphology of the NiAl3 phase, growing in thin dendrites into the Al matrix, is suitable for the closing of cracks, which pass through the material.
Zobrazit více v PubMed
Zhang S., Kwakernaak C., Sloof W., Bruck E., van der Zwaag S., van Dijk N. Self Healing of Creep Damage by Gold Precipitation in Iron Alloys. Adv. Eng. Mater. 2015;17:598–603. doi: 10.1002/adem.201400511. DOI
Hautakangas S., Schut H., Rivera P., van Dijk N.H., van der Zwaag S. A first step towards self healing in aluminum alloys; Proceedings of the International Conference on New Frontiers in Light Metals; Delft, The Netherlands. 9 November 2006.
Hautakangas S., Schut H., van der Zwaag S., Rivera Diaz del Castillo P.E.J., van Dijk N.H. The Role of the Aging Temperature on the Self-Healing Kinetics in an Underaged AA2024 Aluminium alloy; Proceedings of the First International Conference on Self Healing Materials; Noordwijk aan Zee, The Netherlands. 18–20 April 2007.
Hautakangas S., Schut H., van Dijk N.H., del Rivera Díaz Castillo P.E.J., van der Zwaag S. Self healing of deformation damage in underaged Al-Cu-Mg alloys. Scr. Mater. 2008;58:719–722. doi: 10.1016/j.scriptamat.2007.11.039. DOI
Ferguson J.B., Schultz B.F., Rohatgi P.K. Self-Healing Metals and Metal Matrix Composites. JOM. 2014;66:866–871. doi: 10.1007/s11837-014-0912-4. DOI
Manuel M.V., Olson G.B. Biomimetic self-healing metals; Proceedings of the 1st International Conference on Self-Healing Materials; Noordwijik aan Zee, The Netherlands. 18–20 April 2007.
Rohatgi P.K. Al-shape memory alloy self-healing metal matrix composite. Mater. Sci. Eng. A. 2014;619:73–76. doi: 10.1016/j.msea.2014.09.050. PubMed DOI PMC
Michalcová A., Marek I., Knaislová A., Sofer Z., Vojtěch D. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy. Materials. 2018;11:199–205. doi: 10.3390/ma11020199. PubMed DOI PMC
Jansen M.M.P. Diffusion in the Nickel-Rich Part of the Ni-AI System at 1000 °C to 1300 °C Ni3AI Layer Growth, Diffusion Coefficients, and Interface Concentrations. Metall. Trensactions. 1973;4:1623–1633.
Fujiwara K., Horita Z. Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples. Acta Mater. 2002;50:1571–1579. doi: 10.1016/S1359-6454(02)00018-6. DOI
Čelko L., Klakurková L., Švejcar J. Diffusion in Al-Ni and Al-NiCr Interfaces at Moderate Temperatures. Defect Diffus. Forum. 2010;297–301:771–777. doi: 10.4028/www.scientific.net/DDF.297-301.771. DOI
Marino K.A., Carter E.A. Ni and Al diffusion in Ni-rich NiAl and the effect of Pt additions. Intermetallics. 2010;18:1470–1479. doi: 10.1016/j.intermet.2010.03.044. DOI
Zhao J.C., Zhengb X., Cahillb D.G. Thermal conductivity mapping of the Ni–Al system and the beta-NiAl phase in the Ni–Al–Cr system. Scr. Mater. 2018;66:935–938. doi: 10.1016/j.scriptamat.2012.02.035. DOI
Kwiecien I., Bobrowski P., Wierzbicka-Miernik A., Litynska-Dobrzynska L., Wojewoda-Budka J. Growth Kinetics of the Selected Intermetallic Phases in Ni/Al/Ni System with Various Nickel Substrate Microstructure. Nanomaterials. 2019;9–27:134–152. doi: 10.3390/nano9020134. PubMed DOI PMC
Adadi M., Amadeh A.A. Formation mechanisms of Ni−Al intermetallics during heat treatment of Ni coating on 6061 Al substrate. Trans. Nonferrous Met. Soc. China. 2015;25:3959–3966. doi: 10.1016/S1003-6326(15)64073-0. DOI
Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities. Materials. 2015;8:2537–2568. doi: 10.3390/ma8052537. DOI
Advanced Powder Metallurgy Technologies