The Effect of Hot Working on the Mechanical Properties of High Strength Biomedical Ti-Nb-Ta-Zr-O Alloy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-20700Y
Grantová Agentura České Republiky
1530217
Grantová Agentura, Univerzita Karlova
FV20147
Ministerstvo Průmyslu a Obchodu
PubMed
31861121
PubMed Central
PMC6947503
DOI
10.3390/ma12244233
PII: ma12244233
Knihovny.cz E-resources
- Keywords
- biomedicine, fatigue testing, hot working, tensile testing, titanium alloys,
- Publication type
- Journal Article MeSH
Beta titanium alloy Ti-35Nb-6Ta-7Zr-0.7O (wt%) was developed as a material intended for the manufacturing of a stem of a hip joint replacement. This alloy contains only biocompatible elements and possesses a very high yield strength already in the cast condition (900 MPa). However, the porosity, large grain size and chemical inhomogeneity reduce the fatigue performance below the limits required for utilization in the desired application. Two methods of hot working, die forging and hot rolling, were used for processing of this alloy. Microstructural evolution, tensile properties and fatigue performance of the hot worked material were investigated and compared to the cast material. Microstructural observations revealed that porosity is removed in all hot-worked conditions and the grain size is significantly reduced when the area reduction exceeds 70%. Static tensile properties were improved by both processing methods and ultimate tensile strength (UTS) of 1200 MPa was achieved. Fatigue results were more reproducible in the hot rolled material due to better microstructural homogeneity, but forging leads to an improved fatigue performance. Fatigue limit of 400 MPa was achieved in the die-forged condition after 70% of area reduction and in the hot rolled condition after 86% of area reduction.
COMTES FHT 334 41 Dobřany Czech Republic
Department of Physics of Materials Charles University 121 16 Prague Czech Republic
Faculty of Mechanical Engineering Czech Technical University Prague 121 35 Prague Czech Republic
See more in PubMed
Long M., Rack H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials. 1998;19:1621–1639. doi: 10.1016/S0142-9612(97)00146-4. PubMed DOI
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Katti K.S. Biomaterials in total joint replacement. Colloids Surfaces B Biointerfaces. 2004;39:133–142. doi: 10.1016/j.colsurfb.2003.12.002. PubMed DOI
Lettich T., Tierney M.G., Parvizi J., Sharkey P.F., Rothman R.H. Primary Total Hip Arthroplasty with an Uncemented Femoral Component: Two- to Seven-Year Results. J. Arthroplast. 2007;22:43–46. doi: 10.1016/j.arth.2007.07.001. PubMed DOI
Casper D.S., Kim G.K., Restrepo C., Parvizi J., Rothman R.H. Primary Total Hip Arthroplasty with an Uncemented Femoral Component: Five- to Nine-Year Results. J. Arthroplast. 2011;26:838–841. doi: 10.1016/j.arth.2011.02.010. PubMed DOI
Abdel-Hady Gepreel M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013;20:407–415. doi: 10.1016/j.jmbbm.2012.11.014. PubMed DOI
Okazaki Y., Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21. doi: 10.1016/j.biomaterials.2004.02.005. PubMed DOI
Rao S., Okazaki Y., Tateishi T., Ushida T., Ito Y. Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3-E1 cells. Mater. Sci. Eng. C. 1997;4:311–314. doi: 10.1016/S0928-4931(97)00016-7. DOI
Steinemann S.G. Titanium—The material of choice? Periodontology 2000. 1998;17:7–21. doi: 10.1111/j.1600-0757.1998.tb00119.x. PubMed DOI
Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI
Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A. 1998;243:244–249. doi: 10.1016/S0921-5093(97)00808-3. DOI
Ahmed T., Silvestri J., Ruiz C., Rack H. A New Low Modulus, Biocompatible Titanium Alloy; Proceedings of the 8th World Conference on Titanium; 22–26 October 1995; Birmingham, UK: Institute of Materials; 1995. pp. 1760–1767.
Ahmed T., Rack H. Low modulus biocompatible titanium base alloys for medical devices. 5,871,595. U.S. Patent. 1999 Feb 16;
Tang X., Ahmed T., Rack H.J. Phase Transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr Alloys. J. Mater. Sci. 2000;35:1805–1811. doi: 10.1023/A:1004792922155. DOI
Kopova I., Stráský J., Harcuba P., Landa M., Janeček M., Bačákova L. Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater. Sci. Eng. C. 2016;60:230–238. doi: 10.1016/j.msec.2015.11.043. PubMed DOI
Rack H.J., Qazi J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C. 2006;26:1269–1277. doi: 10.1016/j.msec.2005.08.032. DOI
Lütjering G., Williams J.C. Titanium. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2007. Engineering Materials and Processes.
Cochardt A.W., Schoek G., Wiedersich H. Interaction between dislocations and interstitial atoms in body-centered cubic metals. Acta Metall. 1955;3:533–537. doi: 10.1016/0001-6160(55)90111-5. DOI
Qazi J.I., Rack H.J., Marquardt B. High-strength metastable beta-titanium alloys for biomedical applications. JOM. 2004;56:49–51. doi: 10.1007/s11837-004-0253-9. DOI
Welsch G., Boyer R., Collings E.W. Materials Properties Handbook: Titanium Alloys. ASM International; Novelty, USA: 1993.
Stráský J., Harcuba P., Václavová K., Horváth K., Landa M., Srba O., Janeček M. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 2017;71:329–336. doi: 10.1016/j.jmbbm.2017.03.026. PubMed DOI
Preisler D., Václavová K., Stráský J., Janeček M., Harcuba P. Microstructure and mechanical properties of Ti-Nb-Zr-Ta-O biomedical alloy; Proceedings of the METAL 2016: 25rd International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016; Ostrava, Czech Republic: TANGER; 2016. pp. 1509–1513.
Weiss I., Semiatin S.L. Thermomechanical processing of beta titanium alloys—An overview. Mater. Sci. Eng. A. 1998;243:46–65. doi: 10.1016/S0921-5093(97)00783-1. DOI
Huang J., Xing H., Sun J. Structural stability and generalized stacking fault energies in β Ti–Nb alloys: Relation to dislocation properties. Scr. Mater. 2012;66:682–685. doi: 10.1016/j.scriptamat.2012.01.023. DOI
ZHANG W., LIU Y., WU H., LIU B., CHEN Z., TANG H. Microstructural evolution during hot and cold deformation of Ti–36Nb–2Ta–3Zr–0.35O alloy. Trans. Nonferrous Met. Soc. China. 2016;26:1310–1316. doi: 10.1016/S1003-6326(16)64251-6. DOI
Sakaguchi N., Niinomi M., Akahori T., Takeda J., Toda H. Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr. Mater. Sci. Eng. C. 2005;25:370–376. doi: 10.1016/j.msec.2005.04.003. DOI
Zhu Y., Wang X., Wang L., Fu Y., Qin J., Lu W., Zhang D. Influence of forging deformation and heat treatment on microstructure of Ti–xNb–3Zr–2Ta alloys. Mater. Sci. Eng. C. 2012;32:126–132. doi: 10.1016/j.msec.2011.10.006. DOI
Málek J., Hnilica F., Veselý J., Smola B., Bartáková S., Vaněk J. The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta–Zr alloys. Mater. Des. 2012;35:731–740. doi: 10.1016/j.matdes.2011.10.030. DOI
Dikovits M., Poletti C., Warchomicka F. Deformation Mechanisms in the Near-β Titanium Alloy Ti-55531. Metall. Mater. Trans. A. 2014;45:1586–1596. doi: 10.1007/s11661-013-2073-4. DOI
Hua K., Xue X., Kou H., Fan J., Tang B., Li J. Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553. J. Alloy. Compd. 2014;615:531–537. doi: 10.1016/j.jallcom.2014.07.056. DOI
Jones N.G., Dashwood R.J., Dye D., Jackson M. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr. Mater. Sci. Eng. A. 2008;490:369–377. doi: 10.1016/j.msea.2008.01.055. DOI
Li K., Yang P. Strain-induced α-to-β phase transformation during hot compression in Ti−5Al−5Mo−5V−1Cr−1Fe alloy. Trans. Nonferrous Met. Soc. China. 2019;29:296–304. doi: 10.1016/S1003-6326(19)64939-3. DOI
Preisler D., Stráský J., Harcuba P., Warchomicka F.G., Janeček M. High Temperature Mechanical Properties and Microstructure of Ti-Nb-Zr-Ta-O Biomedical Alloy. Acta Phys. Pol. A. 2018;134:636–639. doi: 10.12693/APhysPolA.134.636. DOI
Bertrand E., Castany P., Péron I., Gloriant T. Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scr. Mater. 2011;64:1110–1113. doi: 10.1016/j.scriptamat.2011.02.033. DOI
Wright S.I. Quantification of recrystallized fraction from orientation imaging scans; Proceedings of the National Research Council of Canada, Proceedings of the Twelfth International Conference on Textures of Materials(ICOTOM-12); Montreal, QC, Canada. 9–13 August 1999; pp. 104–109.
Zhao J., Zhong J., Yan F., Chai F., Dargusch M. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al. J. Alloy. Compd. 2017;710:616–627. doi: 10.1016/j.jallcom.2017.03.219. DOI
Glowacki M., Kuziak R., Malinowski Z., Pietrzyk M. Modelling of heat transfer, plastic flow and microstructural evolution during shape rolling. J. Mater. Process. Technol. 1995;53:159–166. doi: 10.1016/0924-0136(95)01972-H. DOI
Geng F., Niinomi M., Nakai M. Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater. Sci. Eng. A. 2011;528:5435–5445. doi: 10.1016/j.msea.2011.03.064. DOI
Ferro A., Mazzetti P., Montalenti G. On the effect of the crystalline structure on fatigue: Comparison between body-centred metals (Ta, Nb, Mo and W) and face-centred and hexagonal metals. The Philos. Mag. A J. Theor. Exp. Appl. Phys. 1965;12:867–875. doi: 10.1080/14786436508218923. DOI
Niinomi M., Nakai M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. [(accessed on 7 October 2019)]; Available online: https://www.hindawi.com/journals/ijbm/2011/836587/ PubMed PMC
Nakai M., Niinomi M., Oneda T. Improvement in Fatigue Strength of Biomedical β-type Ti-Nb-Ta-Zr Alloy While Maintaining Low Young’s Modulus Through Optimizing ω-Phase Precipitation. Metall. Mater. Trans. A. 2012;43:294–302. doi: 10.1007/s11661-011-0860-3. DOI
Song X., Wang L., Niinomi M., Nakai M., Liu Y., Zhu M. Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions. Mater. Sci. Eng. A. 2014;619:112–118. doi: 10.1016/j.msea.2014.09.069. DOI
Sheremetyev V., Brailovski V., Prokoshkin S., Inaekyan K., Dubinskiy S. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications. Mater. Sci. Eng. C. 2016;58:935–944. doi: 10.1016/j.msec.2015.09.060. PubMed DOI
Li S.J., Cui T.C., Hao Y.L., Yang R. Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater. 2008;4:305–317. doi: 10.1016/j.actbio.2007.09.009. PubMed DOI
Long M., Crooks R., Rack H.J. High-cycle fatigue performance of solution-treated metastable-β titanium alloys. Acta Mater. 1999;47:661–669. doi: 10.1016/S1359-6454(98)00343-7. DOI