Application of a Dy3Co0.6Cu0.4Hx Addition for Controlling the Microstructure and Magnetic Properties of Sintered Nd-Fe-B Magnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTARF18031
Ministerstvo Školství, Mládeže a Tělovýchovy
RFMEFI61618X0093
Ministry of Education and Science of the Russian Federation
CZ.1.05/2.1.00/19.0387
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31861171
PubMed Central
PMC6947039
DOI
10.3390/ma12244235
PII: ma12244235
Knihovny.cz E-zdroje
- Klíčová slova
- Nd–Fe–B magnets, grain boundary diffusion, hydrogenation, magnetic properties, microstructure,
- Publikační typ
- časopisecké články MeSH
The focus of new technologies on the formation of inhomogeneous distributions of heavy rare-earth metals (REMs) in hard magnetic Nd-Fe-B materials is of scientific importance to increase their functional properties, along with preserving existing sources of heavy REMs. This paper focused on the coercivity enhancement of Nd2Fe14B-based magnets by optimizing the microstructure, which includes the processes of grain boundary structuring via the application of a Dy3Co0.6Cu0.4Hx alloy added to the initial Nd-Fe-B-based powder mixtures in the course of their mechanical activation. We have studied the role of alloying elements in the formation of phase composition, microstructure, the fine structure of grains, and the hysteretic properties of hard magnetic Nd(R)2Fe14B-based materials. It was shown that the Dy introduction via the two-component blending process (the hydrogenated Dy3Co0.6Cu0.4 compound is added to a powder mixture) resulted in the formation of the core-shell structure of 2-14-1 phase grains. The efficient improvement of the coercivity of Nd(RE)-Fe-B magnets, with a slight sacrifice of remanence, was demonstrated.
Institute of Low Temperature and Structure Research Polish Academy of Sciences 50 422 Wroclaw Poland
Zobrazit více v PubMed
Liu W.Q., Sun H., Yi X.F., Liu X.C., Zhang D.T., Yue M., Zhang J.X. Coercivity enhancement in Nd–Fe–B sintered permanent magnet by Dy nanoparticles doping. J. Alloys Compd. 2010;501:67–69. doi: 10.1016/j.jallcom.2010.04.030. DOI
Sepehri-Amin H., Liu L., Ohkubo T., Yano M., Shoji T., Kato A., Schrefl T., Hono K. Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy. Acta Mater. 2015;99:297–306. doi: 10.1016/j.actamat.2015.08.013. DOI
Komuro M., Satsu Y., Suzuki H. Increase of coercivity and composition distribution in fluoride-diffused NdFeB sintered magnets treated by fluoride solutions. IEEE Trans. Magn. 2010;46:3831–3833. doi: 10.1109/TMAG.2010.2064780. DOI
Ni J., Ma T., Yan M. Improvement of corrosion resistance in Nd–Fe–B magnets through grain boundaries restructuring. Mater. Lett. 2012;75:1–3. doi: 10.1016/j.matlet.2012.01.100. DOI
Liang L., Man T., Zhang P., Jin J., Yan M. Coercivity enhancement of NdFeB sintered magnets by low melting point Dy32.5Fe62Cu5.5 alloy modification. J. Magn. Magn. Mater. 2014;355:131–135. doi: 10.1016/j.jmmm.2013.11.007. DOI
Liu X., Wang X., Liang L., Zhang P., Jin J., Zhang Y., Ma T., Yan M. Rapid coercivity increment of Nd–Fe–B sintered magnets by Dy69Ni31 grain boundary restructuring. J. Magn. Magn. Mater. 2014;370:76–80. doi: 10.1016/j.jmmm.2014.06.051. DOI
Guo S., Chen R.J., Ding Y., Yan G.H., Lee D., Yan A.R. Effect of DyHx addition on the magnetic properties and microstructure of Nd14.1Co1.34Cu0.04Febal.B5.84 magnets. J. Phys. Conf. Ser. 2011;266:16–19. doi: 10.1088/1742-6596/266/1/012030. DOI
Kim T.-H., Lee S.-R., Kim H.-J., Lee M.-W., Jang T.-S. Magnetic and microstructural modification of the Nd–Fe–B sintered magnet by mixed DyF3/DyHx powder doping. J. Appl. Phys. 2014;115:17A763. doi: 10.1063/1.4867965. DOI
Lukin A., Kolchugina N.B., Burkhanov G.S., Klyueva N.E., Skotnicova K. Role of terbium hydride additions in the formation of microstructure and magnetic properties of sintered Nd-Pr-Dy-Fe-B magnets. Inorg. Mater. Appl. Res. 2013;4:256–259. doi: 10.1134/S207511331303009X. DOI
Burkhanov G.S., Lukin A.A., Kolchugina N.B., Koshkid’ko Y.S., Dormidontov A.G., Skotnicova K., Zivotsky O., Cegan T., Sitnov V.V. 23rd International Workshop on Rare-Earth and Future Permanent Magnets and Their Applications. REPM; Annapolis, MD, USA: 2014. Effect of low-temperature annealing on the structure and hysteretic properties of Nd–Fe–B magnets prepared with hydride-containing mixtures; pp. 367–369.
Li X., Liu S., Cao X., Zhou B., Chen L., Yan A., Yan G. Coercivity and thermal stability improvement in sintered Nd–Fe–B permanent magnets by intergranular addition of Dy–Mn alloy. J. Magn. Magn. Mater. 2016;407:247–251. doi: 10.1016/j.jmmm.2016.01.085. DOI
Jin C., Chen R., Yin W., Tang X., Wang Z., Ju J., Lee D., Yan A. Magnetic properties and phase evolution of Nd–Fe–B magnets with intergranular addition of Pr-Co alloy. J. Alloys Compd. 2016;670:72–77. doi: 10.1016/j.jallcom.2016.02.006. DOI
Zhang X., Guo S., Yan C.-J., Cai L., Chen R., Lee D., Yan R. Improvement of the thermal stability of sintered Nd–Fe–B magnets by intergranular addition of Dy82.3Co17.7. J. Appl. Phys. 2014;115:17A757. doi: 10.1063/1.4868491. DOI
Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L., editors. Binary Alloy Phase Diagrams. Volume 2. ASM International; Cleveland, OH, USA: 1990. pp. 971–2104.
Baker Hughes . In: ASM Handbook Volume 3: Alloy Phase Diagrams. Hiroaki O., Mark E.S., Erik M.M., editors. Volume 3. ASM International; Cleveland, OH, USA: 1992. p. 1741.
Predel B. Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys’ of Landolt-Börnstein—Group IV. Physical Chemistry. 1st ed. Springer; Berlin, Germany: 1995. p. 337.
The Materials Project. [(accessed on 20 April 2019)];2019 Available online: https://materialsproject.org/materials/mp-1191571/
The Materials Project. [(accessed on 20 April 2019)];2019 Available online: https://materialsproject.org/materials/mp-24151.
Kim T.-H., Lee S.-R., Namkumg S., Jang T.-S. A study on the Nd-rich phase evolution in the Nd–Fe–B sintered magnet and its mechanism during post-sintering annealing. J. Alloys Compd. 2012;537:261–268. doi: 10.1016/j.jallcom.2012.05.075. DOI
Wang S.C., Li Y. In situ TEM study of Nd-rich phase in NdFeB magnet. J. Magn. Magn. Mater. 2005;285:177–182. doi: 10.1016/j.jmmm.2004.07.035. DOI
Cook B.A., Harringa J.L., Laabs F.C., Dennis K.W., Russell A.M., McCallum R.W. Diffusion of Fe, Co, Nd, and Dy in R2(Fe1−xCox)14B where R=Nd or Dy. J. Magn. Magn. Mater. 2001;23:136–141. doi: 10.1016/S0304-8853(01)00378-X. DOI
Skotnicova K., Burkhanov G.S., Kolchugina N.B., Kursa M., Cegan T., Lukin A.A., Zivotsky O., Prokofev P.A., Jurica J., Li Y. Structural and magnetic engineering of (Nd, Pr, Dy, Tb)–Fe–B sintered magnets with Tb3Co0.6Cu0.4Hx composition in the powder mixture. J. Magn. Magn. Mater. 2020;498:166220. doi: 10.1016/j.jmmm.2019.166220. DOI
Pan M., Ge H., Zhang P., Zhu J., Jiao Z., Zhao Y. Effects of cobalt addition on the coercivity of sintered NdFeb magnets prepared by hd method. Zhongguo Xitu Xuebao. 2010;28:247–251.
Nishio S., Goto R., Matsuura M., Tezuka N., Sugimoto S. Wettability between Nd2Fe14B and Nd-Rich Phase in Nd-Fe-B Alloy System. J. Jpn. Inst. Met. 2008;72:1010–1014. doi: 10.2320/jinstmet.72.1010. DOI
Goto R., Nishio S., Matsuura M., Sugimoto S., Tezuka N. Wettability and interfacial microstructure between Nd2Fe14B and Nd-rich phases in Nd-Fe-B alloys. IEEE Trans. Magn. 2008;44:4232–4234. doi: 10.1109/TMAG.2008.2001544. DOI
Cui X.G., Yan M., Ma T.Y., Yu L.Q. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd–Fe–B magnets. Physica B. 2008;403:4182–4185. doi: 10.1016/j.physb.2008.09.002. DOI
Liu Y.L., Liang J., He Y.C., Li Y.F., Wang G.F., Ma Q., Liu F., Zhang Y., Zhang X. FThe effect of CuAl addition on the magnetic property, thermal stability and corrosion resistance of the sintered NdFeB magnets. AIP Adv. 2018;8:056227. doi: 10.1063/1.5008766. DOI
Kim T.-H., Lee S.-R., Kim J.W., Kim Y.D., Kim H.-J., Lee M.-W., Jang T.-S. Optimization of the post-sintering annealing condition for the high Cu content Nd-Fe-B sintered magnet. J. Appl. Phys. 2014;115:17A770. doi: 10.1063/1.4869157. DOI
Lee S., Kwon J., Cha H.-R., Kim K.M., Kwon H.-W., Lee J., Lee D. Enhancement of coercivity in sintered Nd-Fe-B magnets by grain-boundary diffusion of electrodeposited Cu-Nd alloys. Met. Mater. Int. 2016;22:340–344. doi: 10.1007/s12540-016-5460-8. DOI
Zhong H., Fu Y., Li G., Liu T., Cui W., Liu W., Zhang Z., Wang Q. Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co Alloys. J. Mag. Mag. Mater. 2017;426:550–553. doi: 10.1016/j.jmmm.2016.09.068. DOI
Lee M.-W., Bae K.-H., Lee S.-R., Kim H.-J., Jang T.-S. Microstructure and magnetic properties of NdFeB sintered magnets diffusion-treated with Cu/Al mixed DyCo alloy-powder. Arch. Metall. Mater. 2017;62:1263–1266. doi: 10.1515/amm-2017-0189. DOI
Burkhanov G.S., Kolchugina N.B., Lukin A.A., Koshkid‘ko Y.S., Cwik J., Skotnicova K., Sitnov V.V. Structure and magnetic properties of Nd–Fe–B magnets prepared from DyH2-containing powder mixtures. Inorg. Mater. Appl. Res. 2018;9:509–516. doi: 10.1134/S2075113318030115. DOI
Burkhanov G.S., Kolchugina N.B., Koshkid‘ko Y.S., Cwik J., Skotnicova K., Cegan T., Prokofev P.A., Drulis H., Hackemer A. Structure and phase composition of Tb3Co0.6Cu0.4 alloys for efficient additions to Nd–Fe–B sintered magnets; Proceedings of the METAL 2017—26th International Conference on Metallurgy and Materials, EU: Conference Proceedings; Brno, Czech Republic. 24–26 May 2017; pp. 1775–1781.
Prokofev P., Kolchugina N.B., Burkhanov G.S., Lukin A.A., Koshkid’ko Y.S., Skotnicova K., Cegan T., Zivotsky O., Kursa M. Multiphase characterization of phase equilibria in the Tb-rich corner of the Co-Cu-Tb system. J. Phase Equilibria Diffus. 2019;40:403–412. doi: 10.1007/s11669-019-00735-x. DOI
Advanced Powder Metallurgy Technologies