• This record comes from PubMed

Inductive Position and Speed Sensors

. 2019 Dec 21 ; 20 (1) : . [epub] 20191221

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
313011T557 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR

Magnetic position and speed sensors are rugged and durable. While DC magnetic sensors use permanent magnets as a field source and usually have only mm or cm range, inductive sensors use electromagnetic induction and they may work up to a distance of 20 m. Eddy current inductive sensors equipped with magnetoresistive sensors instead of inductive coils can operate at low frequencies, allowing detection through a conductive wall. In this paper, we make an overview of existing systems and we present new results in eddy current velocity and position measurements. We also present several types of inductive position sensors developed in our laboratories for industrial applications in pneumatic and hydraulic cylinders, underground drilling, large mining machines, and for detecting ferromagnetic objects on conveyors. While the most precise inductive position sensors have a resolution of 10 nm and linearity of 0.2%, precision requirements on the industrial sensors which we develop are less demanding, but they should have large working distance and large resistance to environmental conditions and interference.

See more in PubMed

Zheng C., Zhu K., de Freitas S.C., Chang J.Y., Davies J.E., Eames P., Freitas P.P., Kazakova O., Kim C., Leung C.W., et al. Magnetoresistive sensor development roadmap (non-recording applications) IEEE Trans. Magn. 2019;55:1–30. doi: 10.1109/TMAG.2019.2896036. DOI

Reininger T., Welker F., von Zeppelin M. Sensors in position control applications for industrial automation. Sens. Actuators A Phys. 2006;129:270–274. doi: 10.1016/j.sna.2005.09.056. DOI

Tumanski S. Modern magnetic field sensors—A review. Prz. Elektrotechniczny. 2013;89:12.

George B., Tan Z.C., Nihtianov S. Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces. IEEE Trans. Ind. Electron. 2017;64:9595–9607. doi: 10.1109/TIE.2017.2726982. DOI

Feng T., Hao S.H., Hao M.H., Wang J.L. Development of a combined magnetic encoder. Sens. Rev. 2016;36:386–396. doi: 10.1108/SR-01-2016-0020. DOI

Fericean S., Droxler R. New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation. IEEE Sens. J. 2007;7:1538–1545. doi: 10.1109/JSEN.2007.908232. DOI

Ripka P., Vyhnanek J., Janosek M., Vcelak J. AMR proximity sensor with inherent demodulation. IEEE Sens. J. 2014;14:3119–3123. doi: 10.1109/JSEN.2014.2325406. DOI

Cardelli E., Faba A., Tissi F. Contact-less speed probe based on eddy currents. IEEE Trans. Magn. 2013;49:3897–3900. doi: 10.1109/TMAG.2013.2248701. DOI

Mirzaei M., Ripka P., Chirtsov A., Vyhnanek J. Eddy current linear speed sensor. IEEE Trans. Magn. 2019;55 doi: 10.1109/TMAG.2018.2872123. DOI

Mirzaei M., Ripka P., Chirtsov A., Vyhnanek J., Grim V. Design and modeling of a linear speed sensor with a flat type structure and air coils. J. Magn. Magn. Mater. 2020;495 doi: 10.1016/j.jmmm.2019.165834. DOI

Yang S.H., Hirata K., Ota T., Kawase Y. Impedance linearity of contactless magnetic-type position sensor. IEEE Trans. Magn. 2017;53 doi: 10.1109/TMAG.2017.2664074. DOI

Martino M., Danisi A., Losito R., Masi A., Spiezia G. Design of a linear variable differential transformer with high rejection to external interfering magnetic field. IEEE Trans. Magn. 2010;46:674–677. doi: 10.1109/TMAG.2009.2033341. DOI

Grima A., Di Castro M., Masi A., Sammut N. Electrical metrological characterization of ironless inductive position sensors with long cables. IEEE Sens. J. 2018;18:7114–7121. doi: 10.1109/JSEN.2018.2851303. DOI

Mandal H., Bera S.K., Saha S., Sadhu P.K., Bera S.C. Study of a modified lvdt type displacement transducer with unlimited range. IEEE Sens. J. 2018;18:9501–9514. doi: 10.1109/JSEN.2018.2872510. DOI

Yanez-Valdez R., Alva-Gallegos R., Caballero-Ruiz A., Ruiz-Huerta L. Selection of soft magnetic core materials used on an lvdt prototype. J. Appl. Res. Technol. 2012;10:195–205. doi: 10.22201/icat.16656423.2012.10.2.409. DOI

Petchmaneelumka W., Rerkratn A., Luangpol A., Riewruja V. Compensation of temperature effect for lvdt transducer. J. Circuits Syst. Comput. 2018;27 doi: 10.1142/S0218126618501827. DOI

Petchmaneelumka W., Koodtalang W., Riewruja V. Simple technique for linear-range extension of linear variable differential transformer. IEEE Sens. J. 2019;19:5045–5052. doi: 10.1109/JSEN.2019.2902879. PubMed DOI PMC

Ripka P., Mirzaei M., Chirtsov A., Vyhnanek J. Transformer position sensor for a pneumatic cylinder. Sens. Actuators A Phys. 2019;294:91–101. doi: 10.1016/j.sna.2019.04.046. DOI

Djuric S.M. Performance analysis of a planar displacement sensor with inductive spiral coils. IEEE Trans. Magn. 2014;50 doi: 10.1109/TMAG.2013.2288273. DOI

Anandan N., George B. Design and development of a planar linear variable differential transformer for displacement sensing. IEEE Sens. J. 2017;17:5298–5305. doi: 10.1109/JSEN.2017.2719101. DOI

Laskoski G.T., Pichorim S.F., Abatti P.J. Distance measurement with inductive coils. IEEE Sens. J. 2012;12:2237–2242. doi: 10.1109/JSEN.2012.2185789. DOI

Tomek J., Mlejnek P., Janasek V., Ripka P., Kaspar P., Chen J. The precision of gastric motility and volume sensing by implanted magnetic sensors. Sens. Actuators A Phys. 2008;142:34–39. doi: 10.1016/j.sna.2007.04.020. DOI

Zikmund A., Ripka P. A magnetic distance sensor with high precision. Sens. Actuators A Phys. 2012;186:137–142. doi: 10.1016/j.sna.2012.05.003. DOI

Mirzaei M., Ripka P., Vyhnanek J., Chirtsov A., Grim V. Rotational eddy current speed sensor. IEEE Trans. Magn. 2019;55 doi: 10.1109/TMAG.2019.2918163. DOI

Attivissimo F., Lanzolla A.M.L., Carlone S., Larizza P., Brunetti G. A novel electromagnetic tracking system for surgery navigation. Comput. Assist. Surg. 2018;23:42–52. doi: 10.1080/24699322.2018.1529199. PubMed DOI

Sha M., Wang Y.F., Ding N., Wu X.M., Fang Z.X. An electromagnetic tracking method based on fast determination of the maximum magnetic flux density vector represented by two azimuth angles. Measurement. 2017;109:160–167. doi: 10.1016/j.measurement.2017.04.027. DOI

Maereg A.T., Secco E.L., Agidew T.F., Reid D., Nagar A.K. A low-cost, wearable Opto-Inertial 6-DOF hand pose tracking system for VR. Technologies. 2017;5:49. doi: 10.3390/technologies5030049. DOI

Hehn M., Sippel E., Carlowitz C., Vossiek M. High-accuracy localization and calibration for 5-dof indoor magnetic positioning systems. IEEE Trans. Instrum. Meas. 2019;68:4135–4145. doi: 10.1109/TIM.2018.2884040. DOI

Taghvaeeyan S., Rajamani R., Sun Z.X. Non-Intrusive piston position measurement system using magnetic field measurements. IEEE Sens. J. 2013;13:3106–3114. doi: 10.1109/JSEN.2013.2259811. DOI

Taghvaeeyan S., Rajamani R. Magnetic sensor-based large distance position estimation with disturbance compensation. IEEE Sens. J. 2015;15:4249–4258. doi: 10.1109/JSEN.2015.2413936. DOI

Faudzi A.M., Suzumori K., Wakimoto S. Design and control of new intelligent pneumatic cylinder for intelligent chair tool application; Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics; Singapore. 14–17 July 2009; pp. 1898–1903.

Yang S.Y., Lee M.C., Lee M.H., Arimoto S. Measuring system for development of stroke-sensing cylinder for automatic excavator. IEEE Trans. Ind. Electron. 1998;45:376–384. doi: 10.1109/41.678995. DOI

Sumali H., Bystrom E.P., Krutz G.W. A displacement sensor for nonmetallic hydraulic cylinders. IEEE Sens. J. 2003;3:818–826. doi: 10.1109/JSEN.2003.820333. DOI

Wang Z.H., Poscente M., Filip D., Dimanchev M., Mintchev M.P. Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement-while-drilling processes. IEEE Instrum. Meas. Mag. 2013;16:26–34. doi: 10.1109/MIM.2013.6704968. DOI

Park B., Myung H. Resilient underground localization using magnetic field anomalies for drilling environment. IEEE Trans. Ind. Electron. 2018;65:1377–1387. doi: 10.1109/TIE.2017.2733420. DOI

Liu T., Wang B.X. Guidance method in HDD based on rotating magnetic field. IEEE Trans. Geosci. Remote Sens. 2014;52:71–75. doi: 10.1109/TGRS.2012.2236099. DOI

Vcelak J., Ripka P., Zikmund A. Long-range magnetic tracking system. IEEE Sens. J. 2015;15:491–496. doi: 10.1109/JSEN.2014.2345576. DOI

Blazek J., Praslicka D., Hudak J., Klinda A., Mikita I., Marcin J. New generation of magnetic relaxation sensors based on the melt-spun FeCoBCu alloys. Acta Phys. Pol. A. 2010;118:1010–1012. doi: 10.12693/APhysPolA.118.1010. DOI

Praslicka D., Blazek J., Hudak J., Mikita I., Moucha V. Industrial applications of magnetometry. J. Electr. Eng. Elektrotechnicky Cas. 2015;66:190–192.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...