Inductive Position and Speed Sensors
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
313011T557
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
PubMed
31877684
PubMed Central
PMC6983043
DOI
10.3390/s20010065
PII: s20010065
Knihovny.cz E-resources
- Keywords
- magnetic position sensors, magnetic speed sensors, magnetic trackers,
- Publication type
- Journal Article MeSH
Magnetic position and speed sensors are rugged and durable. While DC magnetic sensors use permanent magnets as a field source and usually have only mm or cm range, inductive sensors use electromagnetic induction and they may work up to a distance of 20 m. Eddy current inductive sensors equipped with magnetoresistive sensors instead of inductive coils can operate at low frequencies, allowing detection through a conductive wall. In this paper, we make an overview of existing systems and we present new results in eddy current velocity and position measurements. We also present several types of inductive position sensors developed in our laboratories for industrial applications in pneumatic and hydraulic cylinders, underground drilling, large mining machines, and for detecting ferromagnetic objects on conveyors. While the most precise inductive position sensors have a resolution of 10 nm and linearity of 0.2%, precision requirements on the industrial sensors which we develop are less demanding, but they should have large working distance and large resistance to environmental conditions and interference.
See more in PubMed
Zheng C., Zhu K., de Freitas S.C., Chang J.Y., Davies J.E., Eames P., Freitas P.P., Kazakova O., Kim C., Leung C.W., et al. Magnetoresistive sensor development roadmap (non-recording applications) IEEE Trans. Magn. 2019;55:1–30. doi: 10.1109/TMAG.2019.2896036. DOI
Reininger T., Welker F., von Zeppelin M. Sensors in position control applications for industrial automation. Sens. Actuators A Phys. 2006;129:270–274. doi: 10.1016/j.sna.2005.09.056. DOI
Tumanski S. Modern magnetic field sensors—A review. Prz. Elektrotechniczny. 2013;89:12.
George B., Tan Z.C., Nihtianov S. Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces. IEEE Trans. Ind. Electron. 2017;64:9595–9607. doi: 10.1109/TIE.2017.2726982. DOI
Feng T., Hao S.H., Hao M.H., Wang J.L. Development of a combined magnetic encoder. Sens. Rev. 2016;36:386–396. doi: 10.1108/SR-01-2016-0020. DOI
Fericean S., Droxler R. New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation. IEEE Sens. J. 2007;7:1538–1545. doi: 10.1109/JSEN.2007.908232. DOI
Ripka P., Vyhnanek J., Janosek M., Vcelak J. AMR proximity sensor with inherent demodulation. IEEE Sens. J. 2014;14:3119–3123. doi: 10.1109/JSEN.2014.2325406. DOI
Cardelli E., Faba A., Tissi F. Contact-less speed probe based on eddy currents. IEEE Trans. Magn. 2013;49:3897–3900. doi: 10.1109/TMAG.2013.2248701. DOI
Mirzaei M., Ripka P., Chirtsov A., Vyhnanek J. Eddy current linear speed sensor. IEEE Trans. Magn. 2019;55 doi: 10.1109/TMAG.2018.2872123. DOI
Mirzaei M., Ripka P., Chirtsov A., Vyhnanek J., Grim V. Design and modeling of a linear speed sensor with a flat type structure and air coils. J. Magn. Magn. Mater. 2020;495 doi: 10.1016/j.jmmm.2019.165834. DOI
Yang S.H., Hirata K., Ota T., Kawase Y. Impedance linearity of contactless magnetic-type position sensor. IEEE Trans. Magn. 2017;53 doi: 10.1109/TMAG.2017.2664074. DOI
Martino M., Danisi A., Losito R., Masi A., Spiezia G. Design of a linear variable differential transformer with high rejection to external interfering magnetic field. IEEE Trans. Magn. 2010;46:674–677. doi: 10.1109/TMAG.2009.2033341. DOI
Grima A., Di Castro M., Masi A., Sammut N. Electrical metrological characterization of ironless inductive position sensors with long cables. IEEE Sens. J. 2018;18:7114–7121. doi: 10.1109/JSEN.2018.2851303. DOI
Mandal H., Bera S.K., Saha S., Sadhu P.K., Bera S.C. Study of a modified lvdt type displacement transducer with unlimited range. IEEE Sens. J. 2018;18:9501–9514. doi: 10.1109/JSEN.2018.2872510. DOI
Yanez-Valdez R., Alva-Gallegos R., Caballero-Ruiz A., Ruiz-Huerta L. Selection of soft magnetic core materials used on an lvdt prototype. J. Appl. Res. Technol. 2012;10:195–205. doi: 10.22201/icat.16656423.2012.10.2.409. DOI
Petchmaneelumka W., Rerkratn A., Luangpol A., Riewruja V. Compensation of temperature effect for lvdt transducer. J. Circuits Syst. Comput. 2018;27 doi: 10.1142/S0218126618501827. DOI
Petchmaneelumka W., Koodtalang W., Riewruja V. Simple technique for linear-range extension of linear variable differential transformer. IEEE Sens. J. 2019;19:5045–5052. doi: 10.1109/JSEN.2019.2902879. PubMed DOI PMC
Ripka P., Mirzaei M., Chirtsov A., Vyhnanek J. Transformer position sensor for a pneumatic cylinder. Sens. Actuators A Phys. 2019;294:91–101. doi: 10.1016/j.sna.2019.04.046. DOI
Djuric S.M. Performance analysis of a planar displacement sensor with inductive spiral coils. IEEE Trans. Magn. 2014;50 doi: 10.1109/TMAG.2013.2288273. DOI
Anandan N., George B. Design and development of a planar linear variable differential transformer for displacement sensing. IEEE Sens. J. 2017;17:5298–5305. doi: 10.1109/JSEN.2017.2719101. DOI
Laskoski G.T., Pichorim S.F., Abatti P.J. Distance measurement with inductive coils. IEEE Sens. J. 2012;12:2237–2242. doi: 10.1109/JSEN.2012.2185789. DOI
Tomek J., Mlejnek P., Janasek V., Ripka P., Kaspar P., Chen J. The precision of gastric motility and volume sensing by implanted magnetic sensors. Sens. Actuators A Phys. 2008;142:34–39. doi: 10.1016/j.sna.2007.04.020. DOI
Zikmund A., Ripka P. A magnetic distance sensor with high precision. Sens. Actuators A Phys. 2012;186:137–142. doi: 10.1016/j.sna.2012.05.003. DOI
Mirzaei M., Ripka P., Vyhnanek J., Chirtsov A., Grim V. Rotational eddy current speed sensor. IEEE Trans. Magn. 2019;55 doi: 10.1109/TMAG.2019.2918163. DOI
Attivissimo F., Lanzolla A.M.L., Carlone S., Larizza P., Brunetti G. A novel electromagnetic tracking system for surgery navigation. Comput. Assist. Surg. 2018;23:42–52. doi: 10.1080/24699322.2018.1529199. PubMed DOI
Sha M., Wang Y.F., Ding N., Wu X.M., Fang Z.X. An electromagnetic tracking method based on fast determination of the maximum magnetic flux density vector represented by two azimuth angles. Measurement. 2017;109:160–167. doi: 10.1016/j.measurement.2017.04.027. DOI
Maereg A.T., Secco E.L., Agidew T.F., Reid D., Nagar A.K. A low-cost, wearable Opto-Inertial 6-DOF hand pose tracking system for VR. Technologies. 2017;5:49. doi: 10.3390/technologies5030049. DOI
Hehn M., Sippel E., Carlowitz C., Vossiek M. High-accuracy localization and calibration for 5-dof indoor magnetic positioning systems. IEEE Trans. Instrum. Meas. 2019;68:4135–4145. doi: 10.1109/TIM.2018.2884040. DOI
Taghvaeeyan S., Rajamani R., Sun Z.X. Non-Intrusive piston position measurement system using magnetic field measurements. IEEE Sens. J. 2013;13:3106–3114. doi: 10.1109/JSEN.2013.2259811. DOI
Taghvaeeyan S., Rajamani R. Magnetic sensor-based large distance position estimation with disturbance compensation. IEEE Sens. J. 2015;15:4249–4258. doi: 10.1109/JSEN.2015.2413936. DOI
Faudzi A.M., Suzumori K., Wakimoto S. Design and control of new intelligent pneumatic cylinder for intelligent chair tool application; Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics; Singapore. 14–17 July 2009; pp. 1898–1903.
Yang S.Y., Lee M.C., Lee M.H., Arimoto S. Measuring system for development of stroke-sensing cylinder for automatic excavator. IEEE Trans. Ind. Electron. 1998;45:376–384. doi: 10.1109/41.678995. DOI
Sumali H., Bystrom E.P., Krutz G.W. A displacement sensor for nonmetallic hydraulic cylinders. IEEE Sens. J. 2003;3:818–826. doi: 10.1109/JSEN.2003.820333. DOI
Wang Z.H., Poscente M., Filip D., Dimanchev M., Mintchev M.P. Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement-while-drilling processes. IEEE Instrum. Meas. Mag. 2013;16:26–34. doi: 10.1109/MIM.2013.6704968. DOI
Park B., Myung H. Resilient underground localization using magnetic field anomalies for drilling environment. IEEE Trans. Ind. Electron. 2018;65:1377–1387. doi: 10.1109/TIE.2017.2733420. DOI
Liu T., Wang B.X. Guidance method in HDD based on rotating magnetic field. IEEE Trans. Geosci. Remote Sens. 2014;52:71–75. doi: 10.1109/TGRS.2012.2236099. DOI
Vcelak J., Ripka P., Zikmund A. Long-range magnetic tracking system. IEEE Sens. J. 2015;15:491–496. doi: 10.1109/JSEN.2014.2345576. DOI
Blazek J., Praslicka D., Hudak J., Klinda A., Mikita I., Marcin J. New generation of magnetic relaxation sensors based on the melt-spun FeCoBCu alloys. Acta Phys. Pol. A. 2010;118:1010–1012. doi: 10.12693/APhysPolA.118.1010. DOI
Praslicka D., Blazek J., Hudak J., Mikita I., Moucha V. Industrial applications of magnetometry. J. Electr. Eng. Elektrotechnicky Cas. 2015;66:190–192.