Impact of oral cleansing strategies on exhaled volatile organic compound levels

. 2020 May 15 ; 34 (9) : e8706.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31880852

Grantová podpora
27981 Cancer Research UK - United Kingdom

RATIONALE: The analysis of volatile organic compounds (VOCs) within exhaled breath potentially offers a non-invasive method for the detection and surveillance of human disease. Oral contamination of exhaled breath may influence the detection of systemic VOCs relevant to human disease. This study aims to assess the impact of oral cleansing strategies on exhaled VOC levels in order to standardise practice for breath sampling. METHODS: Ten healthy volunteers consumed a nutrient challenge followed by four oral cleansing methods: (a) water, (b) saltwater, (c) toothbrushing, and (d) alcohol-free mouthwash. Direct breath sampling was performed using selected ion flow tube mass spectrometry after each intervention. RESULTS: Proposed reactions suggest that volatile fatty acid and alcohol levels (butanoic, pentanoic acid, ethanol) declined with oral cleansing interventions, predominantly after an initial oral rinse with water. Concentrations of aldehydes and phenols (acetaldehyde, menthone, p-cresol) declined with oral water rinse; however, they increased after toothbrushing and mouthwash use, secondary to flavoured ingredients within these products. No significant reductions were observed with sulphur compounds. CONCLUSIONS: Findings suggest that oral rinsing with water prior to breath sampling may reduce oral contamination of VOC levels, and further interventions for oral decontamination with flavoured products may compromise results. This intervention may serve as a simple and inexpensive method of standardisation within breath research.

Zobrazit více v PubMed

Krespi YP, Shrime MG, Kacker A. The relationship between oral malodor and volatile sulfur compound-producing bacteria. Otolaryngol Head Neck Surg. 2006;135(5):671-676.

Snel J, Burgering M, Smit B, et al. Volatile sulphur compounds in morning breath of human volunteers. Arch Oral Biol. 2011;56(1):29-34.

Porter SR. Oral malodour (halitosis). BMJ. 2006;333(7569):632-635.

van den Velde S, Quirynen M, van Hee P, van Steenberghe D. Halitosis associated volatiles in breath of healthy subjects. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853(1-2):54-61.

Scully C, Greenman J. Halitology (breath odour: Aetiopathogenesis and management). Oral Dis. 2012;18(4):333-345.

Tangerman A, Winkel EG. Extra-oral halitosis: An overview. J Breath Res. 2010;4(1):1-6, 017003.

Thorn RM, Greenman J. Microbial volatile compounds in health and disease conditions. J Breath Res. 2012;6(2):1-25, 024001.

Markar SR, Wiggins T, Antonowicz S, et al. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. JAMA Oncol. 2018;4(7):970-976.

Smith D, Spanel P. Studies of interstellar ion reactions using the SIFT technique: Isotope fractionation. Acc Chem Res. 1992;24:414-420.

Spanel P, Smith D. Selected ion flow tube - mass spectrometry: Detection and real-time monitoring of flavours released by food products. Rapid Commun Mass Spectrom. 1999;13(7):585-596.

Hryniuk A, Ross BM. Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. Int J Mass Spectrom. 2009;285(1-2):26-30.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...