ALCAT1 Overexpression Affects Supercomplex Formation and Increases ROS in Respiring Mitochondria
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31885824
PubMed Central
PMC6925921
DOI
10.1155/2019/9186469
Knihovny.cz E-zdroje
- MeSH
- 1-acylglycerol-3-fosfát-O-acyltransferasa genetika metabolismus MeSH
- buněčné dýchání MeSH
- galaktosa metabolismus MeSH
- HeLa buňky MeSH
- kardiolipiny metabolismus MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie metabolismus MeSH
- multimerizace proteinu genetika MeSH
- multiproteinové komplexy metabolismus MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-acylglycerol-3-fosfát-O-acyltransferasa MeSH
- galaktosa MeSH
- kardiolipiny MeSH
- LCLAT1 protein, human MeSH Prohlížeč
- multiproteinové komplexy MeSH
- reaktivní formy kyslíku MeSH
Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.
Zobrazit více v PubMed
Pangborn C. Isolation and purification of a serologically active phospholipid from beef heart. Journal of Biological Chemistry. 1942;143:247–256.
Claypool S. M., Koehler C. M. The complexity of cardiolipin in health and disease. Trends in Biochemical Sciences. 2012;37(1):32–41. doi: 10.1016/j.tibs.2011.09.003. PubMed DOI PMC
Daum G. Lipids of mitochondria. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1985;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. PubMed DOI
Gebert N., Joshi A. S., Kutik S., et al. Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Current Biology: CB. 2009;19(24):2133–2139. doi: 10.1016/j.cub.2009.10.074. PubMed DOI PMC
Boscia A. L., Treece B. W., Mohammadyani D., et al. X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chemistry and Physics of Lipids. 2014;178:1–10. doi: 10.1016/j.chemphyslip.2013.12.010. PubMed DOI PMC
Schlame M., Haldar D. Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. Journal of Biological Chemistry. 1993;268(1):74–79. PubMed
Schlame M., Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Letters. 2006;580(23):5450–5455. doi: 10.1016/j.febslet.2006.07.022. PubMed DOI
Cao J., Liu Y., Lockwood J., Burn P., Shi Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. Journal of Biological Chemistry. 2004;279(30):31727–31734. doi: 10.1074/jbc.M402930200. PubMed DOI
Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. Journal of Lipid Research. 2008;49(8):1607–1620. doi: 10.1194/jlr.R700018-JLR200. PubMed DOI PMC
Lu Y. W., Claypool S. M. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Frontiers in Genetics. 2015;6:1–27. doi: 10.3389/fgene.2015.00003. PubMed DOI PMC
Paradies G., Paradies V., De Benedictis V., Ruggiero F. M., Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta - Bioenergetics. 2014;1837(4):408–417. doi: 10.1016/j.bbabio.2013.10.006. PubMed DOI
Tatsuta T., Scharwey M., Langer T. Mitochondrial lipid trafficking. Trends in Cell Biology. 2014;24(1):44–52. doi: 10.1016/j.tcb.2013.07.011. PubMed DOI
Maranzana E., Barbero G., Falasca A. I., Lenaz G., Genova M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxidants & Redox Signaling. 2013;19(13):1469–1480. doi: 10.1089/ars.2012.4845. PubMed DOI PMC
Shoubridge E. A. Supersizing the mitochondrial respiratory chain. Cell Metabolism. 2012;15(3):271–272. doi: 10.1016/j.cmet.2012.02.009. PubMed DOI
Mileykovskaya E., Dowhan W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids. 2014;179:42–48. doi: 10.1016/j.chemphyslip.2013.10.012. PubMed DOI PMC
Fry M., Green D. E. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. Journal of Biological Chemistry. 1981;256(4):1874–1880. PubMed
Paradies G., Petrosillo G., Pistolese M., Ruggiero F. M. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286(1):135–141. doi: 10.1016/S0378-1119(01)00814-9. PubMed DOI
Zhang M., Mileykovskaya E., Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. Journal of Biological Chemistry. 2005;280(33):29403–29408. doi: 10.1074/jbc.M504955200. PubMed DOI PMC
Apostolova N., Victor V. M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxidants & Redox Signaling. 2015;22(8):686–729. doi: 10.1089/ars.2014.5952. PubMed DOI PMC
Murphy M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC
Paradies G., Paradies V., Ruggiero F. M., Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2014;20(39):14205–14218. doi: 10.3748/wjg.v20.i39.14205. PubMed DOI PMC
Acehan D., Malhotra A., Xu Y., Ren M., Stokes D. L., Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophysical Journal. 2011;100(9):2184–2192. doi: 10.1016/j.bpj.2011.03.031. PubMed DOI PMC
Habersetzer J., Ziani W., Larrieu I., et al. ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology. International Journal of Biochemistry and Cell Biology. 2013;45(1):99–105. doi: 10.1016/j.biocel.2012.05.017. PubMed DOI
Schlame M., Ren M., Xu Y., Greenberg M. L., Haller I. Molecular symmetry in mitochondrial cardiolipins. Chemistry and Physics of Lipids. 2005;138(1-2):38–49. doi: 10.1016/j.chemphyslip.2005.08.002. PubMed DOI
Schlame M., Rüstow B. Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. The Biochemical Journal. 1990;272(3):589–595. doi: 10.1042/bj2720589. PubMed DOI PMC
Taylor W. A., Hatch G. M. Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1) The Journal of Biological Chemistry. 2009;284(44):30360–30371. doi: 10.1074/jbc.M109.048322. PubMed DOI PMC
Li J., Romestaing C., Han X., et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metabolism. 2010;12(2):154–165. doi: 10.1016/j.cmet.2010.07.003. PubMed DOI PMC
Rieger B., Shalaeva D. N., Sohnel A. C., et al. Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells. Scientific Reports. 2017;7(1) doi: 10.1038/srep46055. PubMed DOI PMC
Li J., Liu X., Wang H., Zhang W., Chan D. C., Shi Y. Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(18):6975–6980. doi: 10.1073/pnas.1120043109. PubMed DOI PMC
Rossignol R., Gilkerson R., Aggeler R., Yamagata K., Remington S. J., Capaldi R. A. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research. 2004;64(3):985–993. doi: 10.1158/0008-5472.CAN-03-1101. PubMed DOI
Picard M., Taivassalo T., Ritchie D., et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One. 2011;6(3, article e18317) doi: 10.1371/journal.pone.0018317. PubMed DOI PMC
Chatzispyrou I. A., Guerrero-Castillo S., Held N. M., et al. Barth syndrome cells display widespread remodeling of mitochondrial complexes without affecting metabolic flux distribution. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2018;1864(11):3650–3658. doi: 10.1016/j.bbadis.2018.08.041. PubMed DOI
Sala-Vila A., Navarro-Lerida I., Sanchez-Alvarez M., et al. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports. 2016;6(1) doi: 10.1038/srep27351. PubMed DOI PMC
Aguer C., Gambarotta D., Mailloux R. J., et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE. 2011;6(12):p. e28536. doi: 10.1371/journal.pone.0028536. PubMed DOI PMC
Gomez B., Jr., Robinson N. C. Quantitative determination of cardiolipin in mitochondrial electron transferring complexes by silicic acid high-performance liquid chromatography. Analytical Biochemistry. 1999;267(1):212–216. doi: 10.1006/abio.1998.2998. PubMed DOI
Hunte C., Koepke J., Lange C., Rossmanith T., Michel H. Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure. 2000;8(6):669–684. doi: 10.1016/S0969-2126(00)00152-0. PubMed DOI
Vartak R., Porras C. A. M., Bai Y. Respiratory supercomplexes: structure, function and assembly. Protein & Cell. 2013;4(8, article 3032):582–590. doi: 10.1007/s13238-013-3032-y. PubMed DOI PMC
Zhang M., Mileykovskaya E., Dowhan W. Gluing the respiratory chain together - cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. Journal of Biological Chemistry. 2002;277(46):43553–43556. doi: 10.1074/jbc.C200551200. PubMed DOI
Effect of noradrenaline on propofol-induced mitochondrial dysfunction in human skeletal muscle cells