ALCAT1 Overexpression Affects Supercomplex Formation and Increases ROS in Respiring Mitochondria

. 2019 ; 2019 () : 9186469. [epub] 20191206

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31885824

Cardiolipin (CL) is a multifunctional dimeric phospholipid that physically interacts with electron transport chain complexes I, III, and IV, and ATP synthase (complex V). The enzyme ALCAT1 catalyzes the conversion of cardiolipin by incorporating polyunsaturated fatty acids into cardiolipin. The resulting CL species are said to be more susceptible to oxidative damage. This is thought to negatively affect the interaction of cardiolipin and electron transport chain complexes, leading to increased ROS production and mitochondrial dysfunction. Furthermore, it is discussed that ALCAT1 itself is upregulated due to oxidative stress. Here, we investigated the effects of overexpression of ALCAT1 under different metabolic conditions. ALCAT1 is located at the ER and mitochondria, probably at contact sites. We found that respiration stimulated by galactose supply promoted supercomplex assembly but also led to increased mitochondrial ROS levels. Endogeneous ALCAT1 protein expression levels showed a fairly high variability. Artificially induced ALCAT1 overexpression reduced supercomplex formation, further promoted ROS production, and prevented upregulation of coupled respiration. Taken together, our data suggest that the amount of the CL conversion enzyme ALCAT1 is critical for coupling mitochondrial respiration and metabolic plasticity.

Zobrazit více v PubMed

Pangborn C. Isolation and purification of a serologically active phospholipid from beef heart. Journal of Biological Chemistry. 1942;143:247–256.

Claypool S. M., Koehler C. M. The complexity of cardiolipin in health and disease. Trends in Biochemical Sciences. 2012;37(1):32–41. doi: 10.1016/j.tibs.2011.09.003. PubMed DOI PMC

Daum G. Lipids of mitochondria. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1985;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. PubMed DOI

Gebert N., Joshi A. S., Kutik S., et al. Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Current Biology: CB. 2009;19(24):2133–2139. doi: 10.1016/j.cub.2009.10.074. PubMed DOI PMC

Boscia A. L., Treece B. W., Mohammadyani D., et al. X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. Chemistry and Physics of Lipids. 2014;178:1–10. doi: 10.1016/j.chemphyslip.2013.12.010. PubMed DOI PMC

Schlame M., Haldar D. Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. Journal of Biological Chemistry. 1993;268(1):74–79. PubMed

Schlame M., Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Letters. 2006;580(23):5450–5455. doi: 10.1016/j.febslet.2006.07.022. PubMed DOI

Cao J., Liu Y., Lockwood J., Burn P., Shi Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. Journal of Biological Chemistry. 2004;279(30):31727–31734. doi: 10.1074/jbc.M402930200. PubMed DOI

Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. Journal of Lipid Research. 2008;49(8):1607–1620. doi: 10.1194/jlr.R700018-JLR200. PubMed DOI PMC

Lu Y. W., Claypool S. M. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Frontiers in Genetics. 2015;6:1–27. doi: 10.3389/fgene.2015.00003. PubMed DOI PMC

Paradies G., Paradies V., De Benedictis V., Ruggiero F. M., Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta - Bioenergetics. 2014;1837(4):408–417. doi: 10.1016/j.bbabio.2013.10.006. PubMed DOI

Tatsuta T., Scharwey M., Langer T. Mitochondrial lipid trafficking. Trends in Cell Biology. 2014;24(1):44–52. doi: 10.1016/j.tcb.2013.07.011. PubMed DOI

Maranzana E., Barbero G., Falasca A. I., Lenaz G., Genova M. L. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxidants & Redox Signaling. 2013;19(13):1469–1480. doi: 10.1089/ars.2012.4845. PubMed DOI PMC

Shoubridge E. A. Supersizing the mitochondrial respiratory chain. Cell Metabolism. 2012;15(3):271–272. doi: 10.1016/j.cmet.2012.02.009. PubMed DOI

Mileykovskaya E., Dowhan W. Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids. 2014;179:42–48. doi: 10.1016/j.chemphyslip.2013.10.012. PubMed DOI PMC

Fry M., Green D. E. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. Journal of Biological Chemistry. 1981;256(4):1874–1880. PubMed

Paradies G., Petrosillo G., Pistolese M., Ruggiero F. M. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286(1):135–141. doi: 10.1016/S0378-1119(01)00814-9. PubMed DOI

Zhang M., Mileykovskaya E., Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. Journal of Biological Chemistry. 2005;280(33):29403–29408. doi: 10.1074/jbc.M504955200. PubMed DOI PMC

Apostolova N., Victor V. M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxidants & Redox Signaling. 2015;22(8):686–729. doi: 10.1089/ars.2014.5952. PubMed DOI PMC

Murphy M. P. How mitochondria produce reactive oxygen species. The Biochemical Journal. 2009;417(1):1–13. doi: 10.1042/BJ20081386. PubMed DOI PMC

Paradies G., Paradies V., Ruggiero F. M., Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2014;20(39):14205–14218. doi: 10.3748/wjg.v20.i39.14205. PubMed DOI PMC

Acehan D., Malhotra A., Xu Y., Ren M., Stokes D. L., Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophysical Journal. 2011;100(9):2184–2192. doi: 10.1016/j.bpj.2011.03.031. PubMed DOI PMC

Habersetzer J., Ziani W., Larrieu I., et al. ATP synthase oligomerization: from the enzyme models to the mitochondrial morphology. International Journal of Biochemistry and Cell Biology. 2013;45(1):99–105. doi: 10.1016/j.biocel.2012.05.017. PubMed DOI

Schlame M., Ren M., Xu Y., Greenberg M. L., Haller I. Molecular symmetry in mitochondrial cardiolipins. Chemistry and Physics of Lipids. 2005;138(1-2):38–49. doi: 10.1016/j.chemphyslip.2005.08.002. PubMed DOI

Schlame M., Rüstow B. Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. The Biochemical Journal. 1990;272(3):589–595. doi: 10.1042/bj2720589. PubMed DOI PMC

Taylor W. A., Hatch G. M. Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1) The Journal of Biological Chemistry. 2009;284(44):30360–30371. doi: 10.1074/jbc.M109.048322. PubMed DOI PMC

Li J., Romestaing C., Han X., et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metabolism. 2010;12(2):154–165. doi: 10.1016/j.cmet.2010.07.003. PubMed DOI PMC

Rieger B., Shalaeva D. N., Sohnel A. C., et al. Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells. Scientific Reports. 2017;7(1) doi: 10.1038/srep46055. PubMed DOI PMC

Li J., Liu X., Wang H., Zhang W., Chan D. C., Shi Y. Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(18):6975–6980. doi: 10.1073/pnas.1120043109. PubMed DOI PMC

Rossignol R., Gilkerson R., Aggeler R., Yamagata K., Remington S. J., Capaldi R. A. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research. 2004;64(3):985–993. doi: 10.1158/0008-5472.CAN-03-1101. PubMed DOI

Picard M., Taivassalo T., Ritchie D., et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One. 2011;6(3, article e18317) doi: 10.1371/journal.pone.0018317. PubMed DOI PMC

Chatzispyrou I. A., Guerrero-Castillo S., Held N. M., et al. Barth syndrome cells display widespread remodeling of mitochondrial complexes without affecting metabolic flux distribution. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2018;1864(11):3650–3658. doi: 10.1016/j.bbadis.2018.08.041. PubMed DOI

Sala-Vila A., Navarro-Lerida I., Sanchez-Alvarez M., et al. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports. 2016;6(1) doi: 10.1038/srep27351. PubMed DOI PMC

Aguer C., Gambarotta D., Mailloux R. J., et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE. 2011;6(12):p. e28536. doi: 10.1371/journal.pone.0028536. PubMed DOI PMC

Gomez B., Jr., Robinson N. C. Quantitative determination of cardiolipin in mitochondrial electron transferring complexes by silicic acid high-performance liquid chromatography. Analytical Biochemistry. 1999;267(1):212–216. doi: 10.1006/abio.1998.2998. PubMed DOI

Hunte C., Koepke J., Lange C., Rossmanith T., Michel H. Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure. 2000;8(6):669–684. doi: 10.1016/S0969-2126(00)00152-0. PubMed DOI

Vartak R., Porras C. A. M., Bai Y. Respiratory supercomplexes: structure, function and assembly. Protein & Cell. 2013;4(8, article 3032):582–590. doi: 10.1007/s13238-013-3032-y. PubMed DOI PMC

Zhang M., Mileykovskaya E., Dowhan W. Gluing the respiratory chain together - cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. Journal of Biological Chemistry. 2002;277(46):43553–43556. doi: 10.1074/jbc.C200551200. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of noradrenaline on propofol-induced mitochondrial dysfunction in human skeletal muscle cells

. 2022 Nov 08 ; 10 (1) : 47. [epub] 20221108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...